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1 Introduction

The Global Financial Crisis (GFC) of 2008–2009 underscored the critical need for robust macro-

prudential policies. It became evident that monitoring the soundness of individual financial institu-

tions was insufficient, and that the resilience of the entire financial system needed to be taken into

account; see e.g. the reports by Brunnermeier et al., 2009 and de Larosiere, 2009. The severity of

the GFC exposed a pronounced underestimation of medium-term downside risks to the economy

resulting from a gradual accumulation of financial vulnerabilities. A plethora of theoretical and

empirical frameworks have since been developed to assess and manage downside risks, includ-

ing, for example, Brunnermeier and Sannikov, 2014, Boissay et al., 2016, He and Krishnamurthy,

2019, Adrian et al., 2019, Suarez, 2021, Caldara et al., 2021, and Carriero et al., 2023. Yet, effec-

tive macro-prudential policies cannot focus solely on mitigating downside risks, but must balance

risk mitigation with growth considerations. As former UK Chancellor George Osborne aptly put

it, “we do not want the financial stability of a graveyard.” How to formalize this key trade-off as

an economic decision problem under uncertainty, and how to study it empirically for an advanced

market-based economy, however, is currently unclear. This is despite a formal framework’s obvi-

ous theoretical appeal and macro-prudential policymakers’ urgent need for analytical support.

This paper develops a comprehensive framework to formalize the decision problem faced by

the macro-prudential authority, and applies it to the euro area. To our knowledge, we are the

first to extend the “risk management” approach of Greenspan (2003, p. 3), Cecchetti (2006), and

Kilian and Manganelli (2008) to address the macro-prudential problem, and to use a flexible but

fully tractable semi-parametric structural quantile vector autoregressive (SQVAR) model to bring

the approach to life. While, strictly speaking, SQVAR models are not new (Chavleishvili and

Manganelli, 2023), the SQVAR framework in this paper is novel in considering more than two

variables at more than one lag, allowing for exogenous global variables, and proposing a coherent

Bayesian (rather than frequentist) inference methodology for its statistical analysis. Whenever

possible, we relate our empirical results to models of financial frictions or other macroeconomic

models.
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Current measures of economic downside risk are borrowed from the financial risk management

literature: Growth-at-Risk (GaR) is Value-at-Risk (VaR) applied to the gross domestic product

(GDP) instead of a bank’s investment portfolio (Adrian et al., 2019, Adrian et al., 2022). GaR

is the tail quantile (usually 5%) of the variable of interest. The main advantage of GaR is its

simplicity: by definition, GDP growth will not be below the estimated GaR with 95% probability.

However, this type of measure has been criticized in the financial econometrics literature on the

grounds that it does not take the whole tail of the distribution into account, as well as for not being

a coherent (e.g. sub-additive) measure of risk. More importantly, it captures only one part (the

downside) of the macro-prudential decision problem, and is silent on the upside potential for the

economy.

We address the limitations of GaR by introducing growth shortfall as a measure of downside

risk, and by complementing it with growth longrise to gauge the economy’s upside potential.

Growth shortfall (longrise) is the scaled growth expectation, conditional on realizing a value below

(above) a certain threshold. Zero serves as a natural threshold when applied to GDP growth,

distinguishing economic contractions from expansions. By design, the sum of growth shortfall and

longrise equals the expected growth. If the macro-prudential authority assigns equal importance to

both components, its goal would be to just maximize expected growth. However, the policymaker’s

objective is to prevent severe and painful economic contractions without unnecessarily limiting

growth potential. The decision framework proposed in this paper formalizes this trade-off by

assigning greater weight to growth shortfall than to longrise.

We illustrate our decision framework by implementing it for the euro area. The empirical

implementation necessitates estimating the joint predictive distribution of all macroeconomic vari-

ables of interest.1 We recover flexible, and potentially asymmetric predictive distributions using a

1Because of the asymmetric emphasis on downside risk, expected growth is no longer a sufficient statistic to
solve the macro-prudential risk management problem. In principle, the mean could still be a sufficient statistic if
the random variables of interest were symmetric and with time-invariant higher moments. In such a case, estimates
of the conditional means of the random variables of interest, augmented by suitable assumptions of the distribution
of the residuals, would suffice. However, there is by now substantial empirical evidence that financial variables
exert a time-varying and asymmetric impact on real variables (see, e.g., Adrian et al., 2019, Delle Monache et al.,
2023, and Iseringhausen et al., 2024). This necessitates the use of suitable econometric models that account for these
characteristics.
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semi-parametric SQVAR model. SQVAR extends the concept of structural VAR to quantile mod-

eling. Essentially, while VARs model the mean dynamic interaction of the endogenous variables

of a system, QVARs model the dynamic interaction of any quantile of the variables of interest.

Structural identification is obtained by standard recursive modeling. Once the model is estimated

for all quantiles, estimates of all predictive distributions can be obtained by sampling from the

estimated quantiles; the main text and web appendix provide the necessary details.

We estimate the SQVAR model’s parameters using Bayesian methods. We rely on established

methodology (Yu and Moyeed, 2001, Kozumi and Kobayashi, 2011, Khare and Hobert, 2012), but

also make an econometric contribution. Leveraging the Bayesian approach, our estimates of the

euro area parameters depend on an informative prior density to sharpen inference, which we obtain

from a different but related sample (several decades of United States (U.S.) data). That is, we first

obtain posterior estimates from U.S. data, which then serve as informative priors for the euro area

parameters. The prior variance, which represents the “weight” assigned to the prior density, can

be estimated from the euro area data following the Empirical Bayes approach of Giannone et al.

(2015). Doing so extends the three-step Gibbs sampler of Khare and Hobert (2012) to four steps.

Overall, our approach to inference allows us to obtain precise posterior estimates of measures of

downside risk and upside potential, among other nonlinear functions of the model’s deterministic

parameters. In addition, we obtain appropriate finite-sample credible intervals, despite a relative

paucity of euro area quarterly macro data and a moderate-to-large number of parameters to be

estimated in each equation of the SQVAR (Chernozhukov and Fernandez-Val, 2011).

Our preferred SQVAR model includes a measure of the financial cycle, real GDP growth, HICP

inflation, financial stress, and a short-term risk-free interest rate and uses four lags. Its parameters

are estimated from euro area data between 1990Q1 and 2022Q4. A global commodity price index

is included as an additional exogenous variable to help explain time variation in inflation and

real GDP. The financial cycle is a measure of credit dynamics in the economy and represents

an intermediate target variable on which macro-prudential policymakers can act by activating or

adjusting macro-prudential instruments. Financial stress characterizes financial crises and can
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amplify other shocks (e.g., He and Krishnamurthy, 2019). Overall, our choice of variables reflects

the idea that financial stability is of concern to policymakers if it is triggered by an impairment

of the financial system and has real economic consequences, e.g. in terms of future economic

activity.2 The monetary part of the system (with inflation and interest rate) is included to take the

impact of the central bank’s actions into account.

We highlight four empirical results.

First, the estimated SQVAR is characterized by substantial asymmetries, in the sense that the

dynamic properties of the system differ considerably across quantiles. For example, a shock to

financial stress shifts the left tail of future GDP growth outward, while leaving its conditional

median and right tail approximately unaffected. These macro-financial interactions imply that the

upper quantiles of the predictive GDP growth distribution are considerably less volatile than its

lower quantiles. This result is in line with Adrian et al. (2019) and Adrian et al. (2022). It also

lends empirical support to macroeconomic models that allow for asymmetric impacts of financial

variables on macroeconomic outcomes, including, for example, nonlinear macro-financial models

with occasionally binding financing constraints such as He and Krishnamurthy (2019), Van der

Ghote (2021), and Mendicino et al. (2024).

Second, our model-implied downside risk estimates are sensitive to the inclusion of financial

variables. In a model specification with only own lags of real GDP growth, and thus without fi-

nancial variables, estimates of downside risks pertaining to the GFC only respond as the crisis

happens, and less forcefully so, while the 2010–2012 euro area sovereign debt crisis is missed

almost entirely. This result lends support to GaR models that include financial conditions as ex-

planatory variables, such as Adrian et al. (2019) and Adrian et al. (2022), and lends less support

to the notion that autoregressive terms and the now-casting of macroeconomic conditions are key

and necessary features (Plagborg-Moller et al., 2020).

2The ECB definition of financial stability refers to “the risk that the provision of necessary financial products and
services by the financial system will be impaired to a point where economic growth and welfare may be materially
affected;” see ECB (2019). Similarly, the Financial Stability Board, International Monetary Fund, and the Bank for
International Settlements define systemic risk as a “risk of disruption to financial services that is (i) caused by an
impairment of all or parts of the financial system, and (ii) has the potential to have serious negative consequences for
the real economy;” see FSB (2009).
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Third, the outcomes of model-based stress tests suggest that the resilience of the euro area

economy to a sequence of adverse financial shocks is not constant over time.3 Our results indicate

that downside risk measures, conditional on future adverse financial shocks, tend to climb in the

lead-up to a crisis, during which they then spike. These risks were most pronounced in the after-

math of the GFC and the euro area sovereign debt crisis. Moreover, the impact of an initial shock

to financial stress is not solely dependent on its initial severity, but also hinges on the endogenous,

asymmetric responses of all other variables in the system, as e.g. suggested by He and Krish-

namurthy (2019), Van der Ghote (2021), and Mendicino et al. (2024). Overall, the pronounced

economic asymmetries revealed in the data suggest that our semi-parametric modeling framework

could be well-suited for conducting repeated model-based stress tests of the entire macro-financial

system.

Finally, our framework provides a metric to assess whether the macro-prudential stance is too

tight or too loose. Welfare calculations for leaning against an exuberant financial cycle can be

based on an appropriate objective function that weights growth shortfall and longrise differently.

We find that the associated welfare gains can be positive or negative. Historically, the gains from

macro-prudential policy tightening tended to be positive in economic expansions and negative in

contractions. This suggests that macro-prudential policymakers should act in a counter-cyclical

fashion by releasing buffers when downside risk is exceptionally high and increasing them gradu-

ally over time when downside risks are low or moderate (see also Van der Ghote, 2021).

Our work is related to at least two strands of the literature. First, a rapidly growing body of

research has examined downside risk in macroeconomic outcomes. Most of this work has focused

on the risk of considerable declines in real GDP, brought about by a deterioration of financial con-

ditions; see e.g. Adrian et al. (2019), Prasad et al. (2019), and Caldara et al. (2021). In particular,

the International Monetary Fund (IMF), the European Central Bank (ECB), and the Federal Re-

serve Bank of New York now routinely publish GaR estimates for major world economies; see

IMF (2017), ECB (2019), and New York Fed (2022). These developments have motivated a pro-

3We define stress testing as a density forecast of the potential impact on all variables in the system when subjected
to a certain sequence of adverse shocks.
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liferation of modeling frameworks to assess the severity of extreme events associated with key

economic variables, including single-equation QR models (Adrian et al., 2019), panel QR models

(Brandao-Marques et al., 2020, Adrian et al., 2022), panel-GARCH models (Brownlees and Souza,

2020), fully non-parametric kernel regression models (Adrian et al., 2021), combined linear vector

autoregressive (VAR) and single-equation QR models (Duprey and Ueberfeldt, 2020, Forni et al.,

2021), nonlinear Bayesian VAR models (Caldara et al., 2021, Carriero et al., 2023), and quantile

FAVAR models (Korobilis and Schröder, 2023). De Santis and van der Veken (2020) show that

even if a recession is due to an unforeseen real shock (such as the 2020 Covid-19 recession), finan-

cial variables can still provide policymakers with timely warnings about the severity of the crisis

and the macroeconomic risks involved.

Second, the SQVAR model relates to the single-equation quantile regression (QR) approach of

Adrian et al. (2019) as the VAR model of Sims (1980) relates to the earlier single-equation AR

approaches of e.g. Koyck (1954) and Almon (1965). To our knowledge, QVAR was first proposed

in unpublished work by Cecchetti and Li (2008). White et al. (2015), Chavleishvili and Manganelli

(2023), Iacopini et al. (2023), and Iacopini et al. (2024) contributed to formalizing the econometric

model. These works fit into the broader literature on multivariate QR, which is an active area of

research (see, for instance, Wei, 2008, Carlier et al., 2016, and Iacopini et al., 2024).

We proceed as follows. Section 2 defines downside risk measures and presents our decision

framework. Section 3 introduces the statistical model. Section 4 describes the euro area data.

Section 5 discusses our key empirical results. Section 6 concludes. A web appendix provides

further technical and empirical results.

2 The risk management decision framework

This section first defines three measures of downside risk and two measures of upside potential.

Some of these measures are related to well-known concepts from the financial risk management

literature. It then integrates these measures into an encompassing decision framework.
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2.1 Measures of downside risk

2.1.1 Growth-at-risk

Our first measure of adverse impact is growth-at-risk (GaRγ
t,t+h) at confidence level γ ∈ (0, 1),

defined implicitly by the probability

P
[
yt+h ≤ GaRγ

t,t+h|Ω1t

]
= γ, (1)

where yt is the quarterly annualized real GDP growth rate between time t− 1 and t, h = 1, . . . , H ,

and H is a certain prediction horizon. The information set Ω1t contains all data known at time

t; see Section 3. In words, GaRγ
t,t+h is implicitly defined by the time t probability of quarterly

annualized output growth at t+h falling below GaRγ
t,t+h, which by definition is set equal to γ (see,

for example, McNeil et al., 2005, Ch. 2.2).

2.1.2 An expectation-based risk measure: growth shortfall

Our second measure of adverse real economic impact is growth shortfall (GS), defined as

GSτ
t,t+h =

∫ τ

−∞
yt+hdFt,t+h(yt+h)

= E [yt+h|yt+h < τ,Ω1t]× P [yt+h < τ |Ω1t] , (2)

where Ft,t+h is a time-t conditional cdf, E [·|Ω1t] denotes a time-t conditional expectation, and the

threshold τ ∈ R could be set to a low conditional quantile, say τ = GaRγ
t,t+h. If so, then the first

factor in (2) coincides with the familiar notion of expected shortfall; see e.g. McNeil et al. (2005,

Ch. 2). Alternatively, it could be set to a certain unconditional quantile, or to zero. In this case,

the first factor in (2) does not coincide with expected shortfall from the financial risk management

literature.

If τ = 0, GS can be factored into two intuitive terms: the expected loss conditional on a
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contraction, and the probability of experiencing a contraction.4 While both components could,

in principle, be studied separately and be of interest in their own right, GS summarizes them

tractably into one metric. When τ = 0, GS corresponds to the economic question: what is the time

t-expected contraction of the economy at time t+ h.

A straightforward and final measure of adverse real economic impact is the average future

growth shortfall (AGS) between t+ 1 and t+H , defined as

AGSτ
t,t+1:t+H = H−1

H∑
h=1

GSτ
t,t+h. (3)

If τ = 0, then the AGS corresponds to the question: what is the average future expected contraction

of the economy between t+ 1 and t+H .

All the above risk measures are economically intuitive and straightforward to communicate.

Risk measures (2) and (3), however, have theoretical and practical advantages over (1). First, while

all above risk measures (1) – (3) can take into account the asymmetric impact of financial variables

on the economy, only (2) and (3) take into account the entire left tail. Second, (scaled) expected

shortfall is a coherent risk measure, while any single quantile in isolation is not (Artzner et al.,

1999). For example, growth shortfall contributions are sub-additive, while GaR contributions are

not. This feature is desirable if one, for instance, sought to study sector contributions to aggregate

GDP-at-risk.

2.2 Measures of upside potential: growth longrise

When considering financial stability policies aimed at containing downside risk, the upper quan-

tiles of future GDP growth, should, ideally, not be negatively affected. For setting up the decision

framework in Section 2.3, we consider two measures of upside potential that are symmetric to two

measures of downside risk just defined.

4To see this, note that E [yt+h|yt+h < τ,Ω1t] ≡
∫ ∞
−∞ yt+h·1{yt+h<τ}dFt,t+h(yt+h)∫ ∞

−∞ 1{yt+h<τ}dFt,t+h(yt+h)
=

∫ τ
−∞ yt+hdFt,t+h(yt+h)

P[yt+h<τ |Ω1t]
.
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First, we define the growth longrise (GL) as the complement to GS,

GLτ
t,t+h =

∫ ∞

τ

yt+hdFt,t+h(yt+h)

= E [yt+h|yt+h > τ,Ω1t]× P [yt+h > τ |Ω1t] . (4)

If τ = 0, then (4) corresponds to the question: what is the time-t expected expansion of the

economy between t + h − 1 and t + h? Similarly to GS, the growth longrise (4) captures the ex-

pected growth given an expansion, and the conditional probability of experiencing an expansion.5

Given the complementarity between GS and GL, their sum equals the expected growth rate of the

economy between t+ h− 1 and t+ h,

E [yt+h|Ω1t] =

∫ ∞

−∞
yt+hdFt,t+h(yt+h)

=

∫ τ

−∞
yt+hdFt,t+h(yt+h) +

∫ ∞

τ

yt+hdFt,t+h(yt+h) = GSτ
t,t+h + GLτ

t,t+h.

Second, and analogously to (3), the average growth longrise (AGL) between t+1 and t+H is

AGLτ
t,t+1:t+H = H−1

H∑
h=1

GLτ
t,t+h. (5)

For later reference, we note that AGSτ
t,t+1:t+H + AGLτ

t,t+1:t+H = E [ȳt+1:t+H |Ω1t], where ȳt+1:t+H

is the average future growth rate of the economy H quarters ahead. As a result, time-t expected

growth can be read off any figure reporting AGSτ
t,t+1:t+H and AGLτ

t,t+1:t+H by adding the two lines.

2.3 Putting it all together in a risk management framework

A key question for a policymaker is to what extent a policy intervention reduces downside risk

to the economy and what risk it imposes in terms of reduced upside potential. Specifically, how

can a policymaker assess the change in forecast distributions triggered by her actions? We address

5To our knowledge, the term “longrise” was coined by Adrian et al. (2019) as the antonym to “shortfall.”
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this question by requiring the policymaker to be explicit about the trade-off between mitigating

downside risks and preserving upside potential. It is equivalent to requiring the decision maker to

provide a utility function and to set policy variables to maximize it.

Suppose the macro-prudential authority has a macro-prudential instrument mt (or vector of

instruments, including a Basel III counter-cyclical capital buffer) that can be used to mitigate

medium-term downside risks to the economy by influencing the financial cycle ct(mt). The

influence of the financial cycle on the economy’s predictive growth distribution can be direct(
ct(mt) → yt+h

)
, or indirect via its impact on other variables, such as financial stress

(
ct(mt) →

st+h → yt+h

)
. The SQVAR structure allows us to capture both types of transmission. A convenient

way to penalize downside risk is given by specifying the utility maximization problem as

max
{mt+h}∞h=1

∞∑
h=1

δh
[
GLt,t+h

(
yt+h(ct:t+h(mt:t+h))

)
+ λpGSt,t+h

(
yt+h(ct:t+h(mt:t+h))

)]
(6)

where λp > 1 is a weight determining the policymaker’s aversion to negative realizations of out-

put growth, 0 < δ ≤ 1 is an intertemporal discount factor, mt:t+h = (mt, . . . ,mt+h)
′, ct:t+h =

(ct, . . . , ct+h)
′, and GSt,t+h is always a negative number for τ ≤ 0.

Since GSτ
t,t+h and GLτ

t,t+h add to expected growth E [yt+h|Ω1t], see Section 2.2, the objective

function (6) can be rewritten in terms of expected economic growth instead of growth longrise,

max
{mt+h}∞h=1

∞∑
h=1

δh
[
Et

(
yt+h(ct:t+h(mt:t+h))

)
+ (λp − 1)GSt,t+h

(
yt+h(ct:t+h(mt:t+h))

)]
, (7)

trading off supporting expected growth against mitigating downside risks. The objective function

(7) is close to an expression suggested in a speech by Carney (2020). We also refer to Suarez

(2021) for a micro-foundation of a similar objective function based on a representative agent with

a CARA utility function on GDP. We use (7) to study the benefits of adopting an active financial

stability policy in Section 5.5 below.
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3 Structural quantile vector autoregression

3.1 The statistical model

This section summarizes the structural quantile vector autoregressive model (SQVAR). We start

by observing a series of random variables {xt : t = 1, . . . , T}, where xt ∈ Rn is an n-vector

with ith element denoted by xit for i = 1, . . . , n and n ∈ N. It is important to define a recursive

information set, which allows us to work with the stratified modeling strategy suggested by Wei

(2008) and adapted in Chavleishvili and Manganelli (2023).

Recursive information set — The recursive information set is defined as:

Ω1t ≡ {xt−1, xt−2, . . .}

Ωit ≡ {xi−1,t,Ωi−1,t} i = 2, . . . , n.

According to this definition, the recursive information set Ω2t, say, contains all the lagged values

of xt as well as the contemporaneous value of x1t. We say that xt follows a SQVAR(1) process if

the recursive γi quantile of xit can be written as

Qγ1(x1t|Ω1t) = ω1(γ1) + a11(γ1)x1,t−1 + a12(γ1)x2,t−1 + . . .+ a1n(γ1)xn,t−1

Qγ2(x2t|Ω2t) = ω2(γ2) + a021(γ2)x1t+

+ a21(γ2)x1,t−1 + a22(γ2)x2,t−1 + . . .+ a2n(γ2)xn,t−1

...

Qγn(xnt|Ωnt) = ωn(γn) + a0n1(γn)x1t + . . .+ a0n,n−1(γn)xn−1,t+

+ an1(γn)x1,t−1 + an2(γn)x2,t−1 + . . .+ ann(γn)xn,t−1

for any γi ∈ (0, 1), i ∈ {1, . . . , n}. When n = 1, this simplifies to the quantile autoregressive

process of Koenker and Xiao (2006).
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In compact notation, we write an SQVAR(p) process as

Qγ(xt|Ωt)︸ ︷︷ ︸
n×1

= ω(γ)︸︷︷︸
n×1

+A0(γ)︸ ︷︷ ︸
n×n

xt︸︷︷︸
n×1

+

p∑
j=1

Aj(γ)︸ ︷︷ ︸
n×n

xt−j︸︷︷︸
n×1

, (8)

where γ ≡ [γ1, . . . , γn]
′ and the other elements stack the appropriate terms. Here, the matrix

A0(γ) is a lower-triangular n× n matrix, with zeros along the main diagonal. The n× n matrices

Aj(γ) for j = 1, . . . , p are unrestricted. In the context of the VAR literature, this representation

is equivalent to identifying the system by assuming a Cholesky decomposition of the covariance

matrix of the residuals from a standard reduced form VAR.

A brief example may be instructive. While our empirical model in Section 5 considers n = 5

variables, q = 19 quantiles, and p = 4 lags, we can consider a bivariate model for the data vector

xt = (yt, st)
′, where yt is the quarterly annualized real GDP growth between t − 1 and t, and st

is a coincident indicator of systemic financial stress. In this much simpler model, we consider one

lag (p = 1) and only two quantiles: 0.1 for GDP, and 0.9 for financial stress. The system (8) can

then be written as Q.1(yt|Ω1t)

Q.9(st|Ω2t)

 =

 ω1(.1)

ω2(.9)

+

 0 0

a021(.9) 0


 yt

st

+

 a11(.1) a12(.1)

a21(.9) a22(.9)


 yt−1

st−1

 .

We here note, in particular, the lower-triangular matrix A0, the contemporaneous term xt = (yt, st)
′

on the right-hand side, and that different quantiles can be considered for different variables. In this

example, a shock to yt moves the 0.9 quantile of st by a021(.9), and a shock to st moves the 0.1

quantile of yt+1 by a12(.1).

In addition to more endogenous variables xt, a realistic SQVAR will often include multiple

lags, deterministic terms dt including dummy variables, and exogenous variables zt. Specifically,
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the SQVAR(p) studied in Section 5 will be of the form

Qγ(xt|Ωt)︸ ︷︷ ︸
n×1

= ω(γ)︸︷︷︸
n×1

+A0(γ)︸ ︷︷ ︸
n×n

xt︸︷︷︸
n×1

+

p∑
j=1

Aj(γ)︸ ︷︷ ︸
n×n

xt−j︸︷︷︸
n×1

+B(γ)︸ ︷︷ ︸
n×k

dt︸︷︷︸
k×1

+

p∑
j=0

Cj(γ)︸ ︷︷ ︸
n×r

zt−j︸︷︷︸
r×1

, (9)

where k and r denote the number of included deterministic terms and exogenous variables, re-

spectively. Exogenous variables zt are modeled via univariate quantile autoregressions; see Web

Appendices A.

3.2 Parameter estimation

We estimate the SQVAR parameters using Bayesian methods. Building heavily upon already-

established methodology (Yu and Moyeed, 2001, Kozumi and Kobayashi, 2011, and Khare and

Hobert, 2012) is possible since the lower-triangular structure on A0 allows us to estimate the model

parameters via n× q univariate quantile regressions, equation-by-equation.

We use informative priors to sharpen inference. Specifically, we first obtain parameter es-

timates from decades of U.S. data.6 The U.S. parameters’ posterior density is then used as an

informative prior for the corresponding euro area model parameters. The weight put on the U.S.

prior is estimated from euro area data, extending the three-step Gibbs sampler of Khare and Hobert

(2012) to a novel four-step sampler. The additional step estimates a prior precision parameter by

sampling from a known inverse-Gamma distribution. By using non-sample U.S. information in

an Empirical Bayes way, we obtain appropriately precise posterior estimates for euro area param-

eters, downside risk measures, and quantile impulse response functions (see Section 3.4), along

with appropriate finite-sample credible intervals, despite a relative paucity of euro area macro data

and a considerable number of parameters to estimate. The difference between the U.S. and euro

area estimates reflects the informational content of euro area data. Web Appendix A.1 discusses

the four-step Gibbs sampler used for posterior inference. Web Appendix A.2 discusses prior spec-

ifications. Web Appendix A.3 derives the fourth step of the Gibbs sampler.

6To our knowledge, using distinct but related data to inform prior distributions, for example via power priors, is
standard e.g. in the analysis of medicinal trials; see e.g. Ibrahim and Chen (2000) and Ibrahim et al. (2015).
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3.3 Density forecasting and risk measurement

This section explains how forecasts can be generated from the recursive SQVAR model (9) without

invoking parametric assumptions on the distribution of the endogenous variables. To focus on the

main idea and simplify the exposition, we here consider a special case of (9), with p = 1 and

B(γ) = C0(γ) = C1(γ) = 0.

Consider an n-vector u∗
1 ≡ [u∗

11, . . . , u
∗
n1]

′ whose elements are random draws from the i.i.d. uni-

form distribution with support on (0, 1). Then a draw from the one-step ahead forecast distribution

of xT+1 is:

x∗
T+1 = (In − A0(u

∗
1))

−1(ω(u∗
1) + A1(u

∗
1)xT )

where In is the n-dimensional identity matrix, and we have replaced the vector of quantile prob-

abilities γ with the random realization u∗
1. The quantile parameters associated with u∗

1 can be

estimated (or were already estimated previously and then stored).

Conditional on this draw, a draw from the two-step ahead forecast distribution of xT+2 is

x∗
T+2 = (In − A0(u

∗
2))

−1(ω(u∗
2) + A1(u

∗
2)x

∗
T+1),

where u∗
2 is another n-vector with i.i.d. random draws from the standard uniform distribution.

Iterating this process forward, it is possible to obtain a sample path (x∗
T+1, x

∗
T+2, . . . , x

∗
T+H) of

any desired length H . The SQVAR’s recursive structure (9) and Lemma 1 of Wei (2008) ensure

that there is a one-to-one continuous mapping between the sample space xT+t and the hypercube

(0, 1)n generated by the random draws u∗
t , for t = 1, . . . , p; see Chavleishvili and Manganelli

(2023) for a discussion.

With n variables, q quantiles, and H steps ahead, there are qnH possible paths at any time

t = 1, . . . , T . To explore the “tree” of all potential future paths at any time, we randomly generate

S future paths for all n variables in xt+h, h = 1, . . . , H quarters ahead. Once predictive densities
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are available, the estimation of downside risk measures is straightforward. At each t + h, we

calculate the required measures of downside risk and upside potential; Web Appendix B provides

the necessary details.

3.4 Quantile impulse response functions

We obtain quantile impulse response function estimates by simulation. Intuitively, given a draw

from the parameters’ posterior distribution, a structural shock to any variable can be propagated

forward using (9). Doing this many times allows us to obtain predictive quantiles of all variables

in the system at any horizon h = 1, . . . , H . These predictive quantiles are compared to their no-

shock counterparts, which are also obtained by simulation. Obtaining QIRF estimates in this way

requires a loop within a loop: an outside loop drawing from the posterior density of the parameters,

and an inside loop propagating forward both the shock and no-shock scenarios. Web Appendix B.1

provides the algorithm and discusses implementation details.

3.5 Counterfactual scenarios

Rather than moving through the tree of potential future values of xt+h completely at random, as just

explained, we can also focus on a subset of potential paths, or, in the extreme, consider only one

path in isolation. Such a subset of potential paths can be thought of as a counterfactual ‘scenario,’

or model-based thought experiment, that conditions on an arbitrary but fixed sequence of future

shocks for a strict subset of variables in xt. We use such scenarios when considering a model-based

stress test in Section 5.4, and when studying the benefits vs. cost from tightening macro-prudential

policy stance in Section 5.5. Web Appendix B.3 provides additional detail.
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4 Euro area data

4.1 GDP and inflation data pre-1999

Structural QVAR models require a sufficiently large sample size to ensure that their parameters can

be estimated with adequate precision. The euro area, however, celebrated its 20th anniversary only

in 2019. When working with quarterly data, T = 4× 23 = 92 is at the low end of what is required

for a meaningful empirical study of macro-financial interactions at different quantiles, particularly

when the SQVAR model contains multiple lags.

We address this challenge in two ways. First, we use non-diffuse priors to inform our empir-

ical analysis; see Section 3.2. Second, we use pre-1999 macro-financial time series data for the

euro area when available. Such pre-1999 data were urgently needed for monetary policy analysis

during the ECB’s early years. As a result, counterfactual data were constructed “as if” the euro

area had already existed earlier. Pre-1999 euro area data is publicly available;7 see e.g. Fagan et al.

(2001). We obtain quarterly real GDP and monthly consumer price index data between 1990Q1

and 1998Q4 from this source and splice it with official Eurostat data on real GDP and the Har-

monised Index of Consumer Prices (HICP) between 1999Q1 and 2022Q4. Quarterly consumer

prices are then computed as averages of monthly index levels. This results in T = 132.

4.2 Composite indicator of systemic stress

As a measure of system-wide financial distress, we use the revised daily version of the ECB’s

composite indicator of systemic stress (CISS) as introduced and described in Chavleishvili and

Kremer (2023). This version of the CISS includes 15 individual market-based financial stress indi-

cators that cover the main segments of a typical modern financial system: financial intermediaries,

money markets, equity markets, bond markets, and foreign exchange markets. The 15 indicators

are aggregated into a single statistic in a way that takes their time-varying cross-correlations into

account. As a result, the CISS takes higher values when stress prevails in most market segments

7https://eabcn.org/page/area-wide-model.
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at the same time, capturing the idea that financial stress is more systemic, and more dangerous for

the economy as a whole, whenever financial instability spreads widely across different parts of the

financial system. The CISS for the euro area (as well as that for the U.S. and other countries) is

updated daily and publicly available via the ECB’s Statistical Data Warehouse.8 Figure C.1 in Web

Appendix C provides a time series plot of quarterly averages of daily CISS data.

4.3 The financial cycle

The financial cycle indicator used in the empirical analysis is based on Lang et al. (2019). It is

designed to capture risks stemming from domestic (real) credit volumes, real estate markets, asset

prices, and external imbalances. Lang et al. (2019) demonstrate that the indicator increases, on

average, three to four years before the onset of systemic financial crises and the ensuing economic

recession, and that its early warning properties for euro area countries are superior to those of the

total credit-to-GDP gap, a popular alternative referred to in Basel-III regulation. As a result, the

financial cycle measurement offers useful information about both the probability and the likely

cost of systemic financial crises several years in advance. In our model, a systemic financial crisis

entails a sharp increase in the CISS and a subsequent large drop in real GDP.

Figure C.1 in Web Appendix C provides a time series plot of the financial cycle indicator. It

takes high values during the dot-com boom years between 1997 and 2000 and during the credit

boom years preceding the 2008–2009 global financial crisis. The financial cycle takes particularly

low values in 2009 and 2011, at times associated with crisis-induced fire sales and financial system

deleveraging.

4.4 Short-term interest rates

To construct a consistent time series of short-term euro area interest rates, we splice together

three time series, as follows. From 1999Q1 to 2022Q4, we use quarterly averages of the three-

months-ahead euro Overnight Index Swap (OIS) rate, a risk-free interest rate. Between 1994Q1

8https://sdw.ecb.europa.eu/
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and 1998Q4, we use the three-month Euro Interbank Offered Rate (EURIBOR), corrected for

the average EURIBOR-OIS spread between 2000Q1 and 2007Q2. Finally, between 1990Q1 and

1993Q4, we use the German Frankfurt Interbank Offered Rate (FIBOR), additionally adjusted for

the average FIBOR-EURIBOR spread between 1994Q1 and 1998Q4. All interest rate data are

taken from London Stock Exchange Group. Web Appendix C provides a time series plot.

5 Implementing the risk management approach

This section first discusses model selection, parameter estimates, and quantile impulse response

function estimates. It then discusses downside risks to the euro area economy and the outcome

of a macro stress testing exercise. Finally, it offers a metric of the macro-prudential policy stance

designed to help assess whether a tightening (leaning against the financial cycle) or a loosening of

macro-prudential policy would yield beneficial outcomes.

5.1 Model specification

We select a n = 5-variable SQVAR model (9) with p = 4 lags as our preferred model.9 Specif-

ically, the vector of endogenous variables xt contains a financial cycle indicator ct, annualized

quarter-on-quarter HICP inflation πt, annualized quarter-on-quarter real GDP growth yt, the CISS

st, and the three-month OIS interest rate rt, xt = (ct, πt, yt, st, rt)
′.10 Slow-moving variables, such

as the financial cycle (which is constructed from multi-year growth rates), inflation, and real GDP

growth, are ordered first, while fast-moving financial variables, such as the CISS and the OIS rate,

are ordered last. The ordering of variables identifies the contemporaneous correlations between

the endogenous model variables according to the recursive information set defined in Section 3.1.

9Information criteria, such as the Deviance Information Criterion DIC, AIC, and BIC, point to different numbers
of lags p, depending on the considered criterion, variable, and quantile. Weighing all evidence, p = 4 is at the
conservative upper end of the indicated values.

10The ECB working paper version of this paper undertakes an extensive variable selection exercise, indicating that
short-term interbank rates can be a useful variable to consider in an SQVAR. In addition, short-term interest rates have
been linked to the accumulation of financial vulnerabilities over time, see e.g. Boissay et al. (2016), and to increasing
leverage and reach-for-yield behavior in financial markets, see e.g. Brunnermeier and Sannikov (2014) and Akinci
et al. (2020). Short-term interest rates, in turn, respond to GDP and inflation through systematic monetary policy.
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We include a global commodity price index (Standard and Poor’s GSCI index; formerly the

Goldman Sachs Commodity Index) as an exogenous variable zt in (9), and also consider p = 4

lags there. The parameters are restricted such that global commodity prices can only impact in-

flation directly; this prevents a positive response of GDP to a global negative supply shock. We

also include four dummy variables dt that correspond to four Covid-related observations between

2020Q1 and 2020Q4. This inclusion effectively neutralizes the effect of these Covid-related ob-

servations on the posterior parameter estimates.

Finally, we follow Estrella (2015) and impose a transmission-lag on the direct (structural)

impact of short-term interest rates on the real economy. As a result, two elements of A1(γ), one in

the inflation and one in the real GDP row, are restricted to zero. Short-term interest rates (monetary

policy) can then still have a first-lag impact on the real economy, but only through the financial

cycle (ordered first in xt).

5.2 Parameter estimates and impulse response functions

Web Appendix D presents posterior mean estimates of the vector of intercepts ω, the triangular

matrix A0, and the lag matrices A1 to A4. Posterior mean estimates are shown with corresponding

95% equally-tailed credible intervals. Least squares parameter estimates are visible as horizontal

lines and are provided as a point of comparison. The posterior parameter estimates are obtained

equation-by-equation via nq univariate Bayesian quantile regressions; see Section 3.2. Web Ap-

pendix E presents the analogous estimates for U.S. data.

The parameter estimates differ substantially across quantiles, and also from their ordinary least-

squares counterparts. E.g., the contemporaneous impact parameters in A0 are often close to zero

around the median, but are in some cases different from zero for tail quantiles. As one example,

the contemporaneous impact of a shock to the financial cycle on financial stress (element [4,1] in

A0) is close to zero to the left of the median and negative for the upper quantiles. As a second

example, the contemporaneous impact of a shock to financial stress on short-term interest rates

(element [5,4] in A0) is close to zero to the right of the median and negative for the lower quantiles.
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Figure 1: Selected quantile impulse response functions
Quantile impulse response functions for the financial cycle, real GDP growth, and the CISS as implied by the posterior
estimates reported in Web Appendix D. Credible bands are at a 95% confidence level, and based on 400 draws from
the posterior distribution and 20,000 forward simulations for each draw. The shock size is chosen as one standard
deviation of the residuals from the median quantile regression of the respective variables. The estimation sam-
ple is 1990Q1 to 2022Q4. Web Appendix D presents the full 5×5 set of QIRFs, and also presents the median response.

Parameter heterogeneity across quantiles is also present for the lagged parameter matrices A1 to

A4. For example, the [3,4]-element of A1 signals the presence of substantial asymmetries in the

impact of financial stress (CISS) on future real GDP growth: the lower quantiles are much more

affected.

Figure 1 plots a selection of quantile impulse response functions (QIRF) as implied by the

parameter estimates for the upper (90th percentile) and lower tails (10th percentile) of variables

relevant for the macro-prudential policymaker: the financial cycle, real GDP growth, and the CISS.

The QIRFs summarise all the direct and indirect, contemporaneous and lagged relationships be-

tween the endogenous model variables. The generally rather low contemporaneous relationships

between the model variables (captured via A0; see Web Appendix D) imply that the QIRF are

qualitatively but also quantitatively largely independent of the specific ordering of the variables in
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xt. To economize on space, the entire set of QIRFs for all endogenous variables and shocks, also

including the median QIRF, can be found in Figure D.10 in Web Appendix D.

In some cases the QIRFs show pronounced asymmetries, while in other cases the differences

between the quantiles are both small and within the credible intervals, representing more or less

linear relationships between the model variables. Consistent with the vulnerable growth literature

(e.g., Adrian et al., 2019, Adrian et al., 2021), the response of real GDP growth to a shock in

the CISS (Figure 1’s panel [2,3]) is much stronger in the left tail (the 0.1 quantile) of the growth

distribution than in its center and right tail (the 0.9 quantile). Thus, a given increase in financial

stress depresses economic growth much more strongly in the lower part of the distribution than in

the upper part.

The response of the CISS to a shock to the financial cycle (Figure 1’s panel [3,1]) indicates an

initial dampening of stress followed by an increase after approximately two years. This pattern is

particularly pronounced for the upper 0.9 quantile of the CISS, which displays a marked negative

response in the short term that reverses after approximately six quarters and subsequently over-

shoots. Vice versa, positive shocks to the CISS depress the financial cycle in the medium term

(Figure 1’s panel [1,3]).

Taken together, the interactions between the CISS, real GDP growth, and the financial cycle

point to the possibility of a vicious cycle during crisis periods, in which an increase in financial

stress triggers a sharp reduction in economic activity, eventually leading to further financial stress.

In addition, a reduction in financial stress today leads to more elevated systemic risk in the medium

term. Such dynamics lend support to nonlinear macroeconomic models with a financial sector that

feature occasionally binding (financing) constraints and a “financial stability-” or “volatility para-

dox,” including Brunnermeier and Sannikov (2014), Boissay et al. (2016), He and Krishnamurthy

(2019), and Mendicino et al. (2024).

Web Appendix E reports SQVAR parameter and credible interval estimates for U.S. data. The

parameter estimates are broadly in line with those for the euro area. For example, growing financial

vulnerabilities shift the right tail of the U.S. CISS towards more positive values. A shock to the
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U.S. CISS shifts the left tail of the predictive GDP growth distribution towards more negative

values while leaving the right tail less affected.

5.3 Estimates of downside risk and upside potential

This section discusses estimates of downside risk and upside potential as defined in Section 2.1. It

considers both quantile- and expectation-based measures.

Figure 2 plots two estimates of GaR, the 5% and 10% predictive quantile of real GDP growth,

at any time t. Three other quantiles (the median, 90%, and 95%) are reported to indicate upside po-

tential and for comparison. All estimates are based on the same (full-sample) parameter estimates

but are otherwise conditional on variables observed up to time t only. The predictive densities

correspond to four different forecast horizons: one quarter ahead, one year ahead, one year ahead

one year out, and one year ahead four years out.

We highlight two results. First, as a result of macro-financial interactions, the SQVAR’s lower

quantiles for future real GDP growth are considerably more volatile than its upper quantiles. For

the one-quarter-ahead forecast, the predictive quantiles’ standard deviations decrease almost mono-

tonically as the quantiles increase: from 2.66 and 2.59 for the 5% and 10% quantile, to 1.85 for the

median quantile, to 1.44 and 1.53 for the 90% and 95% quantile. This result mirrors that of Adrian

et al. (2019) for U.S. data.

Second, the asymmetry in the predictive density decreases with the forecasting horizon. For

the one-year-ahead forecast, the predictive quantiles’ standard deviations continue to decrease as

the quantiles increase: from 1.73 and 1.61 for the 5% and 10% quantile, to 1.27 for the median,

to 1.04 and 1.02 for the 90% and 95% quantile. For the one-year-ahead forecast four years out,

the predictive quantiles’ standard deviations still decrease as the quantiles increase, although the

pattern is now more muted: from 0.49 and 0.43 for the 5% and 10% quantile, to 0.31 for the

median, to 0.28 and 0.29 for the 90% and 95% quantile. We conclude that the asymmetry in the

predictive density is considerably reduced but still noticeable after five years.

Figure 3 plots the average growth shortfall AGSτ
t,t+1:t+H and average growth longrise AGLτ

t,t+1:t+H
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Figure 2: Predictive quantiles for euro area real GDP growth
Selected predictive quantiles over different forecast horizons at any time. The top left and top right panels refer
to the annualized one-quarter and one-year ahead growth rate. The bottom left and bottom right panels refer to
the one-year-ahead growth rate one year out, and the one-year-ahead growth rate four years out. The forecasts are
obtained by simulation using S = 100, 000 at each t. SQVAR parameters are fixed at their full sample posterior mean
estimated for q = 19 quantiles ranging from 0.05 to 0.95.

estimated at each point in time between 1990Q1 and 2022Q4, for τ = 0, and H = 4 quarters (top

panel) and H = 8 quarters ahead (bottom panel). To study the importance of including financial

conditions and medium-term vulnerabilities in the econometric model, we here also compare our

SQVAR model’s estimates to those of a much simpler, univariate quantile autoregressive (QAR)

model for GDP growth only. As a result, the QAR model includes only its own lags but not the

financial cycle, the CISS, or any other variable.

We again highlight two results. First, accounting for financial conditions is important. There

is a pronounced difference between the downside risk (AGS) estimate implied by the SQVAR and

the univariate QAR. During the GFC in 2008 and 2009, the QAR-based downside risk estimate

declines much later, and by much less, compared to the SQVAR-based estimate. In the context

of the euro area sovereign debt crisis of 2010–2012, only the SQVAR indicates elevated down-

ward risks to growth ahead of the recession of 2011–2012; by construction, the QAR model only
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responds when the economy actually starts to contract. Similarly, towards the end of the sample,

increased downside risks reflecting the bout in energy and consumer price inflation in 2021–2022,

elevated financial stress, and rapid monetary policy tightening, only show up in the SQVAR. Dur-

ing the Covid-19 pandemic, both the SQVAR and QAR deliver similar upward and downward

risks to growth. This is intuitive, as financial factors did not play a major role in bringing about the

unprecedented stress.

Second, from a risk management perspective, the AGS can be compared to the AGL. The

GFC, for example, did not only generate an extremely low value for the AGS but also for the

AGL. With a value of only 0.8% (taken from Figure 3’s bottom panel), the average expected

expansion of the economy over the following two years would have been approximately 1.6%. This

compares to an average of approximately 4% over the entire sample. The GFC thus reduced living

standards especially because of the contraction, but also persistently muted the upside potential of

the economy, and did so until early 2015.

5.4 Model-based macro stress testing

Macro-prudential policymakers suspect that the economy is not at all times equally robust to the

materialization of financial shocks (Adrian et al. (2019). If so, policymakers need help deciding

whether today, say, is a good time to tighten macro-prudential policy or not. This section discusses

the outcome of a model-based stress testing exercise that can inform this question.

We here understand macro stress testing as a density forecast of what would happen to real

GDP growth if the system is subjected to a certain sequence of adverse shocks. We refer to such

a sequence as a stress scenario; see Section 3.5. Our stress testing approach is different from

supervisory stress tests in that our main variables of interest are not banking sector variables but

measures of macro-financial stability, particularly real GDP growth.

Figure 4 reports the time-t conditional forecast of average future real GDP growth ȳt+1:t+4

between time t and t + 4 as implied by our model. The forecast is conditional on a 0.1 quantile

realization of the financial cycle ct+h, and a 0.9 quantile realization for the CISS st+h, consecu-

24



Figure 3: Euro area growth shortfall and longrise
Estimates of time-t average growth shortfall AGSτ

t,t+1:t+H and average growth longrise AGLτ
t,t+1:t+H evaluated

at τ = 0 and H = {4, 8}; see (3) and (5). Based on 200 draws from the posterior distribution and 50,000 forward
simulations of the conditional distribution for each draw. The model is estimated for q = 19 quantiles ranging from
0.05 to 0.95. Quarterly annualized real GDP growth is reported for comparison (dotted black line, scale on right axis).
Shaded areas indicate euro area recessions as determined by the CEPR business cycle dating committee. Credible
intervals are dashed and at a 95% level.

tively for h = 1, . . . , 4. The magnitude of these shocks is comparable to the four observed quantile

realizations for these variables between 2008Q1 and 2008Q4 during the GFC. The stress test (i.e.,
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Figure 4: Vulnerability to GFC-sized shocks
Solid line: period-t predicted average annualized quarterly real GDP growth four quarters ahead, ˆ̄yt+1:t+4 conditional
on four consecutive 0.1 quantile realizations of the financial cycle ct, and 0.9 quantile realizations for CISS st.
The remaining variables’ paths are unrestricted. Dotted line: realized annual average between t + 1 and t + 4, for
comparison. Based on 1,000 draws from the full sample posterior distributions and one forward simulation per draw.
Credible intervals are reported at a 95% level. Grey-shaded areas indicate CEPR-dated euro area recessions. The
estimation sample is 1990Q1 – 2022Q4.

the same sequence of adverse shocks) is repeated at each t = 1, . . . , T , and is always based on

the same (full sample, posterior mean) parameter estimates. As a result, the figure is informative

about the impact of GFC-sized financial shocks on economic activity at any time in our sample.11

Figure 4 suggests that the euro area economy is not equally resilient to the same sequence of

equally unlikely adverse financial shocks at all times. This is a direct consequence of the asym-

metries (nonlinearities) inherent in the estimated model. A comparison with Figure C.1 in Web

Appendix C indicates that real GDP growth is particularly vulnerable after the financial cycle has

taken high values, such as in years 1992, 2003, and 2008.

11Alternatively, one could define stress in absolute size; see e.g. Brownlees and Engle (2017) for a discussion.
We prefer the quantile-based approach because the probability of the stress materializing remains constant over time
regardless of current levels of volatility. In periods of low volatility, an absolute stress value would imply a much
more severe and much less probable stress event, as it would take a sequence of more severe shocks, that is quantile
realisations, to reach the necessary level of impact. On the other hand, low volatility does not necessarily imply that
the tipping point is also low.
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Figure 4 can also be informative when assessing the macro-prudential policy stance. An un-

usually high level of vulnerability to future real and financial shocks — a value of ȳt+1:t+4 below

its unconditional 5% quantile, say — indicates that large shocks have materialized and macro-

prudential buffers could be decreased. In the euro area, such values are observed during the finan-

cial crisis of 2008 – 2009 and the sovereign debt crisis in 2011 – 2012. Low to moderate levels of

vulnerability indicate times when macro-prudential buffers could be built up, such as in the years

around 2005 and 2015. Gradually growing macro-prudential buffers can help increase banking

sector resilience, lean against unrestrained credit growth, improve risk-taking incentives (Admati

and Hellwig, 2013), and are available to be decreased later if necessary.

5.5 Macro-prudential policy stance

An active debate in policy circles revolves around the question of how to measure the macro-

prudential policy stance. In other words, should macro-prudential policy be tightened or loosened

today conditional on currently available information? We use the decision framework in Section

2.3 to address this question.

We assume that macro-prudential instruments, including a counter-cyclical capital buffer, can

be used to influence the financial cycle, and ask when it is beneficial to do so.12 The thought

experiment of this section is the following: How does the macro-prudential authority’s objective

function value (7) change if the financial cycle is marginally lowered now, to be increased later on?

If the change is positive, we conclude that the macro-prudential stance is too loose (as it would

benefit from a lower, less buoyant financial cycle). If, on the other hand, the answer is negative,

then macro-prudential policy is too tight.

Table 1 summarizes our policy experiment by contrasting two counterfactual scenarios. Its

top and bottom panels set out a passive macro-prudential policy scenario and an active macro-

prudential policy scenario, respectively. Each scenario looks five years (20 quarters) into the future.

12A complete answer to this question would require including the macro-prudential policy instruments into our
model. This could be done, in principle, if high-quality and up-to-date data on the timing and nature of macro-
prudential policy actions were available, and at the cost of decreased model parsimony, parameter estimation precision,
and, potentially, identification credibility. We leave this to future research.
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In each case, the first six quarters are buoyant times during which the financial cycle could, in

principle, be marginally reduced. Following a turn of the financial cycle (quarters 7 – 8), a short

but severe financial crisis ensues (quarters 9 – 11), potentially impacting the macro-economy for a

long time in its aftermath (quarters 12 – 20).

The active scenario is identical to the passive scenario, except that the policymaker decides to

lean against the buoyant financial cycle during the first six quarters. For example, the policymaker

could compel banks to comply with higher counter-cyclical capital buffer requirements during

these times. During the financial crisis (in quarters 9–10), these buffers can then be decreased,

leading to a marginally less vicious collapse of the financial cycle. We simulate this policy by

setting the financial cycle to its 0.5 quantile during h = 1, . . . , 6, instead of 0.7, and to its 0.4

conditional quantile during h = 7, . . . , 10, instead of 0.2. The CISS takes high values, and the

financial cycle takes low values, during the financial crisis in either scenario. The evolution of

all other variables in the SQVAR (real GDP growth, inflation, and short-term interest rates) is

unrestricted. Doing so allows us to simulate forward the GDP growth rate, yt+h, and associated

growth shortfalls, GSt,t+h, at any time t+ h, h = 1, . . . , 20.

Each policy scenario is evaluated as

ut (Scenario) = ˆ̄yt+1:t+20 (Scenario) + (λp − 1) · ÂGSt,t+1:t+20 (Scenario) , (10)

where the mean growth estimate ˆ̄yt+1:t+20 and average future growth shortfall estimate ÂGSt,t+1:t+20

are obtained from 50,000 simulations of potential future values of yt+h. We repeat this exercise 200

times, each time using a new draw from the parameters’ posterior density. The objective function

(10) operationalizes (7) by choosing parameters as δ = 1 for h = 1, . . . , 20 and δ = 0 thereafter,

λ ∈ {1.5, 3}, and τ = 0. Our choice of the penalty term λp = 1.5 implies that the policymaker

cares twice as much about future average growth than she cares about reducing downside risk. If

λp = 3, then the policymaker is more risk averse and cares twice as much about reducing down-

side risk than she cares about fostering future average growth. We evaluate (10) twice, once for the
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Table 1: Passive vs. active macro-prudential policy
Notes: The top and bottom panels report selected quantiles for the financial cycle (ct) and CISS (st) under a passive
and active macro-prudential policy benchmark, respectively. “–” implies that the quantile is picked at random. This
is always the case for real GDP growth yt, inflation πt, and short-term interest rates rt. The first six quarters are
“sanguine times,” during which the financial cycle could be marginally reduced. In quarters 7 and 8 the financial cycle
begins to turn, taking low values. Quarters 9–11 constitute a financial crisis, during which the CISS takes high values
and the financial cycle takes low values. Quarters 12–20 track the financial crisis’ fallout. The quantile choices for the
financial cycle in the top vs. bottom panel (0.7 vs. 0.5, and 0.2 vs. 0.4) reflect that the financial cycle does not have to
contract as much during the crisis when it is managed during the first six quarters; see also the discussion in the main
text.

“sanguine
times”

“turn of
cycle”

“financial
crisis” “fallout”

t+ h 1–6 7–8 9–10 11 12–20

Passive
benchmark

yt, πt, rt – – – – –
ct 0.7 0.2 0.2 – –
st – – 0.9 0.9 –

Active
policy

yt, πt, rt – – – – –
ct 0.5 0.4 0.4 – –
st – – 0.9 0.9 –

active scenario and once for the passive scenario, and study the difference between the two values

at any time t.

Figure 5 presents the objective function difference ∆ut = ut (active) − ut (passive) associ-

ated with adopting the active macro-prudential policy along with 50% and 68% credible intervals.

Adopting the active policy is the preferred option most of the time. This is not surprising, as we

condition on a financial crisis later on. Adopting the active policy, however, is not equally benefi-

cial at all times. The benefits from leaning against the financial cycle are maximal during the late

1990s before the bust of the dot-com boom in 2000, and during the mid-2000s before the onset

of the global financial crisis in 2007. This is intuitive, as the financial system was buoyant during

these times, arguably seeding the respective busts later on (Boissay et al., 2016).

The benefits from leaning against the financial cycle are estimated to be negative following the

end of the dot-com boom in 2000, and during the GFC. This is again intuitive, as the financial

system was already deleveraging during these times, and requiring more would add insult to in-
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Figure 5: The benefits from active macro-prudential policy

The benefit of adopting an active macro-prudential policy stance in utility terms, ∆ut = ut (active) − ut (passive);
see (10). Based on 200 draws from the posterior distribution and 50,000 forward simulations of the conditional
distribution for each draw. Parameters are chosen as δ = 1, τ = 0, H = 20, and λp ∈ {1.5, 3}. The difference
is based on full sample estimates. Credible intervals are dashed and at a 50% and 68% level, respectively. The
estimation sample is 1990Q1 to 2022Q4. Shaded areas indicate CEPR-dated euro area recessions.

jury. The objective function difference ∆ut is mildly correlated with the euro area financial cycle,

suggesting that it is a valuable variable to track to inform macro-prudential policy discussions.

Finally, we note that ∆ut in Figure 5 is estimated with considerable uncertainty. The zero
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line is often inside the plotted credible intervals, suggesting that setting macro-prudential policy in

practice is as much an art as it is (currently) a science.

Despite the surrounding uncertainty, Figure 5 may nevertheless suggest a potential rule-of-

thumb to set the Basel-III counter-cyclical capital buffer in practice: increase the buffer by 0.25

percentage points every year, within the given regulatory range between zero and 2.5%, except

when it’s obvious that the economy is in, or about to enter, a contraction. In this way, the buffer

can be brought from zero to full 2.5% capacity in ten years of expansion, in time to be ready for

release during the next vicious financial crisis.

6 Conclusion

We formalized the macro-prudential authority’s decision problem under uncertainty and studied it

for the euro area. Flexible and potentially asymmetric predictive distributions are obtained from a

semi-parametric structural quantile vector autoregressive model. This model allows us to study the

nonlinear relationship between economic growth and various other factors such as financial stress,

the financial cycle, short-term interest rates, and inflation. We documented substantial asymmetries

in the predictive distribution of real GDP growth and the responses of macroeconomic variables to

financial shocks. Considering counterfactual scenarios allowed us to perform a model-based stress

testing exercise, assess macro-prudential policy stance, and study the conditions when macro-

prudential interventions are most likely to be beneficial.

The paper presents several possible routes for future research. First, to our knowledge, shock

identification for Quantile VAR models, e.g. through sign restrictions or external instruments, is

currently a wide-open field (Chavleishvili and Manganelli, 2023, Iacopini et al., 2024). Second,

panel-SQVAR approaches could be considered theoretically and empirically, possibly incorporat-

ing hierarchical specifications of random coefficients as in, e.g., Jarocinski (2010). Finally, the

relative out-of-sample density forecasting performance of various recent macro-at-risk models,

and combinations thereof, is of substantial interest but has, to our knowledge, not yet been studied.
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A Bayesian estimation

A.1 Gibbs sampler

We obtain posterior inference relying predominantly on established methods for Bayesian quantile

regressions (see e.g. Yu and Moyeed, 2001, Kozumi and Kobayashi, 2011, Khare and Hobert,

2012, and Korobilis, 2017). This still allows us, as in Chavleishvili and Manganelli (2023), to

estimate the SQVAR equation by equation. We start by considering the endogenous variable xi at

quantile γ,

xit = w′
itβi(γ) + εγit, (A.1)

where xit is a scalar, i = 1, . . . , n, t = 1, . . . , T , wit is a vector of regressors (in our case, con-

temporaneous values and lags of the endogenous and exogenous variables, a constant, as well as

dummy variables), and βi(γ) is a vector of quantile-specific coefficients. The error term εγit is

assumed to have an asymmetric Laplace distribution of the form

f (εγit) = γ (1− γ) [σi(γ)]
−1 e−ργ(εγit), (A.2)

where σi(γ) is a scale parameter, and ργ (ε) ≡ ε(γ − I(ε < 0)) is the standard quantile regression

check function; see also Koenker and Bassett Jr (1978) and Engle and Manganelli (2004). It is

clear from (A.2) that minimizing the usual quantile regression objective function, as e.g. defined in

Koenker and Bassett Jr (1978), is equivalent to maximizing a corresponding asymmetric Laplace

log-likelihood; see e.g. Yu and Moyeed (2001).

An asymmetric Laplace random variable can be represented as a mixture of a standard normal

and an exponential random variable (Yu and Moyeed, 2001, Kozumi and Kobayashi, 2011). As a

result, (A.1) can be restated as

xit = w′
itβi(γ) + θ(γ)νit(γ) + τ̃(γ)

√
σi(γ)νit(γ)u

γ
it, (A.3)
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where τ̃ 2(γ) = 2
γ(1−γ)

, θ(γ) = 1−2γ
γ(1−γ)

, uγit ∼ N (0, 1), νit(γ) ∼ E (σi(γ)), and where E (ẽ) denotes

an exponential distribution with mean ẽ.

Since this section exclusively considers univariate regressions at a single quantile γ, we drop

the quantile notation for convenience and leave the dependence implied. The mixture representa-

tion in (A.3) allows us to draw from the conditional posterior distributions using an appropriate set

of prior distributions. We follow Kozumi and Kobayashi (2011) and choose the prior distributions

βi ∼ N
(
µβ,i, λiΣβ,i

)
, σi ∼ IG

(
ασ,i, ζσ,i

)
, (A.4)

where IG (α, ζ) denotes an inverse-gamma distribution with shape and scale parameters α and ζ .

The addition of the scalar λi ≥ 0 to the prior variance of βi lets us control the looseness/tightness

of the respective prior. A lower value of λi implies a tight, informative prior, while a high value of

λi implies a loose, uninformative prior. We give λi its own prior density and let λi ∼ IG (αλ, ζλ).

With the above priors in place, and continuing to rely on Kozumi and Kobayashi (2011) and

Khare and Hobert (2012), we end up with the following four-step Gibbs sampler for all nq equa-

tions, dropping subscript i for convenience. Steps 1 – 3 are identical to those in Khare and Hobert

(2012). Step is 4 is new but straightforward; Section A.3 provides a derivation.

1. Draw σ|x,w, . . . ∼ IG
(
ᾱσ, ζ̄σ

)
,

where ᾱσ = ασ +
3
2
T , and ζ̄σ = ζσ +

∑T
t=1

(xt−w′
tβ−θνt)

2

2τ̃2νt
+
∑T

t=1 νt.

2. Draw β|x,w, . . . ∼ N
(
µ̄β, Σ̄β

)
,

where Σ̄−1
β =

∑T wtw′
t

τ̃2σνt
+ λ−1Σ−1

β , and µ̄β = Σ̄β

[∑T wt(xt−θνt)
τ̃2σνt

+ λ−1Σ−1
β µβ

]
.

3. Draw ν−1
t |xt, wt, . . . ∼ IGN (κ̄1, κ̄2), where IGN denotes the inverse Gaussian distribu-

tion, with κ̄1 =
√
θ2+2τ̃2

|xt−w′
tβ|

, and κ̄2 = θ2+2τ̃2

στ̃2
.

4. Draw λ|β, . . . ∼ IG
(
ᾱλ, ζ̄λ

)
,

where ᾱλ = αλ +
k̃
2
, ζ̄λ = ζλ +

1
2

(
β − µβ

)′
Σ−1

β

(
β − µβ

)
, and k̃ is the dimension of β (the

number of regressors).
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To conclude, we note that the Gibbs sampler of Kozumi and Kobayashi (2011) and Khare and

Hobert (2012), steps 1–3 above, comes with theoretical guarantees: draws from the sampler con-

verge to the intractable true posterior, and do so at a geometric rate. To prove this result, Khare

and Hobert (2012) make no assumptions regarding the dimensions of the data (so that the result

continues to hold even if k̃ were large relative to T ).

A.2 Specification of prior densities

As explained in the main text, we first estimate the SQVAR model’s parameters for U.S. data. We

do so using the same model specification (i.e., variables, deterministic terms, number of lags and

zero restrictions). Next, we let these estimates inform the euro area parameters’ priors. We are thus

taking advantage of decades of data available for the U.S. between 1973Q1 and 2022Q4. Both the

U.S. and euro area economies are advanced, market-based economies with institutional similarities

along many dimensions.

A.2.1 Priors for U.S. data

We need to specify the prior parameters µUS
β,i

ΣUS
i , αUS

σ,i , ζUS

σ,i
, αUS

λ,i , and ζUS

λ,i
. For U.S. data, we

keep the prior parameters homogeneous across quantiles. We have therefore dropped a potential

dependence on γ.

We employ a Minnesota prior for the vector of coefficients βUS
i (see, e.g., Litterman, 1986,

Luetkepohl, 2005, p. 225, Giannone et al., 2015). This means that the prior density is Gaussian,

and pointing to a persistent autoregressive process of order one. Specifically, we set the coefficient

in βUS
i referring to variable i’s own first lag equal to either 0.9 or 1, depending on the variable. For

the CISS, the financial cycle, and the real GDP growth rate, the own-lag coefficient is set to 0.9;

for CPI inflation and the Federal Funds Rate the coefficient is set to one. All other elements of βUS
i

are given a prior mean of zero.

We further specify the Minnesota prior’s covariance matrix ΣUS
β,i as diagonal, with σUS

β,ij,l the

element corresponding to the lth lag of the jth endogenous variable in equation i. The diagonal

3



elements are given by

σUS
β,ij,l = ϕ2

0 if i = j, l = 0

σUS
β,ij,l =

(
ϕ0

lϕ3

)2
if i = j, l > 0

σUS
β,ij,l =

(
ϕ0ϕ1

σ̂i

σ̂j

)2

if i ̸= j, l = 0

σUS
β,ij,l =

(
ϕ0ϕ1

lϕ3
σ̂i

σ̂j

)2

if i ̸= j, l > 0

σUS
β = (ϕ0ϕ2)

2 otherwise,

where ϕ0 is a general tightness parameter, ϕ1 a tightness parameter on endogenous variables other

than variable i, ϕ2 a tightness parameter on exogenous variables and deterministic terms, and ϕ3

a tightness parameter controlling the importance of lags of endogenous variables. We choose

ϕ0 = 0.2, ϕ1 = 0.5, ϕ2 = 105, and ϕ3 = 1. These are common choices in the literature (see,

e.g., Litterman, 1986). Parameter σ̂i denotes the standard error of the residuals from a univariate

quantile autoregression on endogenous variable i at the median. Finally, we set αUS
σ,i = ζUS

σ,i = 0.01,

corresponding to a non-informative prior for the scale parameter σ. We also set αUS
λ,i = 3 and

ζUS
λ,i = 6, implying a prior mean and a prior standard deviation of 3 for λi.

A.2.2 Priors for euro area data

We set the euro area prior parameters for βEA
i (γ) to match the corresponding posterior moments

obtained from U.S. data. Specifically,

µEA

β,i
(γ) =

1

NS

NS∑
s=1

β̂US
i,s (γ)

ΣEA
β,i (γ) =

1

NS

NS∑
s=1

(
β̂US
i,s (γ)− µEA

β,i
(γ)

)2

,

where β̂US
i,s are the NS posterior draws of βUS

i . All other euro area hyperparameters are given

values identical to their U.S. counterparts. Specifically, αEA
σ,i = ζEA

σ,i
= 0.01, αEA

λ,i = 3, and

ζEA

λ,i
= 6.
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A.3 Posterior density for λ

This section derives the fourth step of the Gibbs sampler in Section A.1. This step is introduced

to estimate a tightness parameter that determines the weight given to the U.S. parameter estimates

in forming the priors for estimating the euro area model. Allowing the data to help decide on

the tightness of the prior density across quantiles and variables appears particularly appropriate in

our case, as we have no reliable prior knowledge of how informative the Minnesota prior is for

the parameters of the U.S. model at any given quantile, nor how informative the U.S. posterior

density is for the parameters of the euro area model. Bayesian updating of the tightness parameter

through a hyper-prior is a common solution, for example, in the literature on shrinkage in Bayesian

regression models (see e.g. Huber and Feldkircher, 2019 and Korobilis and Pettenuzzo, 2019). In

addition, such updating is common in the analysis of sequential medical trials (see, e.g., Ibrahim

et al., 2015 and Ibrahim and Chen, 2000).

To arrive at the conditional posterior distribution for λ, again dropping subscripts γ and i for

clarity, we start by writing out the kernel of the joint posterior distribution, P (·), with the terms

relating to λ,

P (λ|·) ∝ |λΣβ|−
1
2 exp

{
−1

2

(
β − µ

β

)′
λ−1Σ−1

β

(
β − µ

β

)}
× λ−αλ−1 exp

{
−ζ

λ
λ−1

}
,

where the first term comes from the normally distributed prior for β and the second term from the

inverse-gamma prior distribution for λ. Rewriting the above expression, we obtain

P (λ|·) ∝ λ−αλ−
k̃
2
−1 exp

{
−λ−1

(
1

2

(
β − µ

β

)′
Σ−1

β

(
β − µ

β

)
+ ζ

λ

)}
∝ IG

(
ᾱλ, ζ̄λ

)
,

where ᾱλ = αλ +
k̃
2

and ζ̄λ = ζλ +
1
2

(
β − µβ

)′
Σ−1

β

(
β − µβ

)
, and where k̃ denotes the number of

regressors. As a result, we can immediately draw λ from its posterior distribution conditional on a

posterior draw of β.
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B Technical details

B.1 Quantile impulse response functions

This section presents the simulation algorithm used to obtain quantile impulse response func-

tions (QIRFs). For a given set of coefficients, we require two sets of conditional distributions to

compare: First, we require the conditional forecast distribution of the data in a baseline scenario

without an initial shock. Second, we require the conditional forecast distribution of the data in a

counterfactual scenario in which a single shock arrives in the first forecasting period. The QIRFs

are obtained as the difference between the latter and the former distribution.

B.1.1 Notation

Throughout this section, we represent the SQVAR(p) as

xt = ω(γ) + A0(γ)xt +

p∑
j=1

Aj(γ)xt−j +B(γ)dt +

p∑
j=0

Cj(γ)zt−j + εγt , (B.1)

for a given γ ≡ [γ1, . . . , γn]
′, and recall the identifying assumption Qγ (ε

γ
t |Ωt) = 0n×1. Simi-

larly, each of the r exogenous variables is modeled as a univariate quantile autoregressive (QAR)

process,

zvt = Wv(γ
∗
v) +

p∑
j=1

Aj,v(γ
∗
v)zv,t−j + Bv(γ

∗
v)dt + ξ

γ∗
v

vt , (B.2)

for γ∗ ≡ [γ∗1 , . . . , γ
∗
v , . . . , γ

∗
r ]

′. To establish notation for the remainder of this section, we let H

denote the forecast horizon, o the forecast origin, M the number of posterior draws required for

posterior inference of the QIRFs, and S the number of forward simulations for each posterior draw.

We assume that G = {0.05, 0.10, . . . , 0.90, 0.95} is a sufficiently large set of q = 19 quantiles

distributed symmetrically around the median. We obtain NS = 2, 500 draws of each βi (γ), after

discarding a burn-in sample of NB = 2, 500.
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B.1.2 Algorithm

The algorithm proceeds as follows.

1. Obtain posterior draws. Obtain and store NS posterior draws for all the SQVAR’s pa-

rameters in (B.1) and (B.2) at all quantiles, see Appendix A.1. We store them in a four-

dimensional array of dimensions [n+ r]× [p(n+ r) + r + 1 + k]× q ×NS .

2. Choose forecast origin. Fix the initial conditions for the endogenous variables xo−(p−1):o

and exogenous variables zo−(p−1):o. We use the unconditional median over the estimation

sample for all variables.

3. Set m = 1.

3.1. Draw parameters. Let β̂(m) be a random draw from the set ofNS posterior draws, and

β̂
(m)
i (γ̌) the subset of parameters corresponding to the posterior draw of βi for some

quantile γ̌.

3.2. Let ϵ̂o+1 be an n× 1 vector of zeros.

3.3. Set s = 1.

3.3.1. Set h = 1.

3.3.1.1. Draw quantiles at random. Obtain n random draws from the uniform dis-

tribution U (0, 1) and map them to the corresponding quantiles in G based on

proximity. Stack the mapped quantiles in the n× 1 vector ϱ. Define the r × 1

vector ϱ∗ in a similar fashion.

3.3.1.2. Set up SQVAR system matrices. Let fAj

(
β̂
(m)
i (γ̌)

)
be a mapping from pos-

terior draw β̂
(m)
i (γ̌) to the ith row of Aj in (B.1). Define similar mappings for

the remaining matrix coefficients. Using these mappings, stack the variable-
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specific posterior draws into matrices of quantile coefficients, such that

Ão+h
j =



fAj

(
β̂
(m)
1 (ϱ1)

)
...

fAj

(
β̂
(m)
i (ϱi)

)
...

fAj

(
β̂
(m)
n (ϱn)

)


ω̃o+h =



fω

(
β̂
(m)
1 (ϱ1)

)
...

fω

(
β̂
(m)
i (ϱi)

)
...

fω

(
β̂
(m)
n (ϱn)

)



C̃o+h
j =



fCj

(
β̂
(m)
1 (ϱ1)

)
...

fCj

(
β̂
(m)
i (ϱi)

)
...

fCj

(
β̂
(m)
n (ϱn)

)


B̃o+h =



fB

(
β̂
(m)
1 (ϱ1)

)
...

fB

(
β̂
(m)
i (ϱi)

)
...

fB

(
β̂
(m)
n (ϱn)

)


for j = 0, . . . , p and h = 1, . . . , H . Define the corresponding matrices for the

exogenous variables analogously using ϱ∗, resulting in matrices W̃o+h
v , Ão+h

j,v

and B̃o+h
v .

3.3.1.3. Iterate exogenous variables forward. Compute the conditional forecast of

each of the r exogenous variables, z(s)o+h, using (B.2) and the relevant quantile

coefficients determined in the previous step as

z
(s)
v,o+h = W̃o+h

v +
P∑

j=1

Ão+h
j,v z

(s)
v,o+h−j + B̃o+h

v dt+h.

3.3.1.4. Iterate endogenous variables forward. Compute the conditional forecast

of x(s)o+h using (B.1) and the relevant quantile coefficients determined in step

3.3.1.2 as

x
(s)
o+h =

(
I − Ão+h

0

)−1

 ω̃o+h +
∑P

j=1 Ã
o+h
j x

(s)
o+h−j

+B̃o+hdt+h +
∑P

j=0 C̃
o+h
j z

(s)
o+h−j + ϵ̂o+h


8



3.3.1.5. If h < H , set h = h+ 1 and return to step 3.3.1.1.

3.3.2. If s < S, set s = s+ 1 and return to step 3.3.1.

3.4. Obtain predicted quantiles. Let x̌o+h = {x(s)o+h}Ss=1 be the set of S simulated forecasts

of xo+h. Compute the γth conditional quantile forecast of xi,o+h as

Qγ (xi,o+h|Ωo) = Qγ (x̌i,o+h) ,

where Qγ (·|Ωo) is the γth quantile conditional on the information set Ωo, and letting

Qγ (·) denote the empirical quantile function. This concludes the baseline (no shock)

forward simulations.

3.5. Choose the shock of interest. Let S be an n× 1 selection vector picking the endoge-

nous variable i to be shocked. (That is, the ith element of S is 1 and 0 otherwise.)

Redefine ϵ̂o+h = ψS, where ψ is a scalar. A common choice of magnitude ψ is the

estimated standard deviation of quantile shocks obtained at the median. Repeat steps

3.3 - 3.4 to obtain the quantile projection conditional on the shock, Qγ (xi,o+h|Ωo, ψ).

3.6. Compute the γth quantile impulse response function as

ι
(m)
γ,i,o+h = Qγ (xi,o+h|Ωo, ψ)−Qγ (xi,o+h|Ωo)

3.7. If m < M , set m = m+ 1 and return to step 3.2.

Posterior inference of the QIRF of the conditional quantile γ of variable i in period o+h is obtained

from the sequence
{
ι
(m)
γ,i,o+h

}M

m=1
.
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B.2 Simulation algorithm for downside risk measures

We obtain measures of downside risks to economic growth between o and o + h by reusing the

simulation algorithm in Section B.1, but now replace steps 3.4-3.6 with the following steps.

3.4. For each forecast horizon, compute the o+ h growth shortfall as

GSτ,(m)
o,o+h =

1

S

S∑
s=1

ỹ
(s)
o+h · 1{ỹ

(s)
o+h < τ},

where ỹ(s)o+h denotes a simulated value for quarterly real GDP growth at time o+ h.

3.5. Compute the final time-o downside risk measure as averages across simulations

AGSτ,(m)
o,o+1:o+h =

1

H

H∑
h=1

GSτ,(m)
o,o+h

Posterior inference is obtained from the sequence
{

AGSτ,(m)
o,o+1:o+h

}M

m=1
. The above steps can simi-

larly be used to compute average growth longrise.
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B.3 Counterfactual scenarios

Rather than moving through the tree of potential future values of xt+h completely at random, as

done in Web Appendix B.2, we may sometimes wish to consider only a subset of paths, or even just

one path, in isolation. Such paths can also be thought of as a ‘counterfactual scenario,’ or model-

based thought experiment, that conditions on an arbitrary but fixed sequence of future shocks.

To this effect, let Γ∗ denote a design matrix of size H × (n + r). Each element of Γ∗ is

either empty or in the interval (0, 1). Any non-empty hth element of the ith column designates the

quantile path to be traveled by variable i in period h in all S simulations. An empty element means

that the path is chosen at random. The matrix Γ∗ can then be readily applied in Step 3.3.1.1 in the

simulation algorithm of Section B.1 to obtain density forecasts in a counterfactual scenario.

An illustration of this principle is given in Figure B.1. There, a single variable, y, is projected

forward for H = 3 periods using two estimated quantiles, γ ∈ {u, d}. An unrestricted projection

as in Figure B.1a yields a total of 23 = 8 unique paths for y to travel along. Consider now the

counterfactual, in which we require y to initially increase, then decrease, and then finally increase

again. This maps to the path satisfying Γ∗ = {u, d, u}′, highlighted by the red dashed lines in

Figure B.1b.

Instead of a fully restricted tree, as illustrated above, one may also consider a partially restricted

tree. In a partially restricted tree, the quantile paths are only fixed for some of the periods or

variables. In the example above, one may, for instance, require that the chosen quantile from

period 1 to 2 is always {d}, while leaving the remaining branches unrestricted. In this case, the

total number of paths that can be traveled equals four
(
Qu,d,u, Qu,d,d, Qd,d,u, Qd,d,d

)
.
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Figure B.1: Illustration of counterfactual scenario analysis through quantile restrictions

Notes: Filled blue lines indicate unrestricted paths, red dashed lines restricted paths, and transparent blue lines the
paths excluded by the imposed restrictions.
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C Data plots

Figure C.1: Euro area and U.S. time series

Notes: Annualised inflation and growth rates are calculated as 400 times the log-difference between quarterly averages.
Sources: European Central Bank, U.S. Bureau of Labor Statistics, U.S. Bureau of Economic Analysis, Board of
Governors of the Federal Reserve System, LSEG, Haver Analytics, and authors’ calculations.
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D Euro area posterior estimates

Figure D.1: Posterior inference for the euro area, ω(γ)

Posterior mean and 95% credible intervals obtained from 2,500 posterior draws. Least squares estimates (in red) for
the conditional mean are provided for comparison.
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Figure D.2: Posterior inference for the euro area, A0(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.3: Posterior inference for the euro area, A1(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.4: Posterior inference for the euro area, A2(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.5: Posterior inference for the euro area, A3(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.6: Posterior inference for the euro area, A4(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.7: Posterior inference for the euro area exogenous variables, C(γ)

Posterior mean and 95% credible intervals are btained from 2,500 posterior draws. Least squares estimates are pro-
vided for comparison.
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Figure D.8: Posterior inference for the euro area dummy variables, B(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.9: Posterior means for the euro area tightness parameter, λi(γ)

Posterior mean estimates of λi(γ) are obtained from 2,500 posterior draws.
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Figure D.10: Quantile impulse response functions for the euro area
Impulse response functions implied by the posterior estimates reported in Figures D.1-D.8. Based on 400 draws from the posterior distribution and 20.000 forward
simulations of the conditional distribution for each draw. Shocks are equal to the standard deviation of residuals from the median quantile regression of the respective
variables. Variables are ordered financial cycle (respective first row), HICP inflation (second row), GDP growth (third row), CISS (fourth row), and the 3-month OIS
rate (fifth row). Credible intervals are dashed and at a 95% level. Estimation sample is 1990Q1 to 2022Q4.
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E U.S. posterior estimates

Figure E.1: Posterior inference for the U.S. , ω(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates (in red)
for the conditional mean are provided for comparison.
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Figure E.2: Posterior inference for the U.S., A0(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates for the
conditional mean are provided for comparison.
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Figure E.3: Posterior inference for the U.S., A1(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are for
comparison.
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Figure E.4: Posterior inference for the U.S., A2(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are for
comparison.
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Figure E.5: Posterior inference for the U.S., A3(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.6: Posterior inference for the U.S., A4(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.7: Posterior inference for the U.S. exogenous variables, C(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.8: Posterior inference for the U.S. dummy variables, B(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.9: Posterior mean estimates for U.S. prior tightness parameter λi(γ)

Posterior mean estimates of λi(γ) are obtained from 2,500 posterior draws.
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Figure E.10: Quantile impulse response functions for the U.S.
Impulse response functions implied by the posterior estimates reported in Figures E.1-E.8. Based on 400 draws from the posterior distribution and 20.000 forward
simulations of the conditional distribution for each draw. Shocks are equal to the standard deviation of residuals from the median quantile regression of the respective
variables. Variables are ordered financial cycle (respective first row), CPI inflation (second row), GDP growth (third row), CISS (fourth row), and the Federal funds rate
(fifth row). Credible intervals are dashed and at a 95% level. Estimation sample is 1973Q1 to 2022Q4.
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