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A Bayesian estimation

A.1 Gibbs sampler

We obtain posterior inference relying predominantly on established methods for Bayesian quantile

regressions (see e.g. Yu and Moyeed, 2001, Kozumi and Kobayashi, 2011, Khare and Hobert,

2012, and Korobilis, 2017). This still allows us, as in Chavleishvili and Manganelli (2023), to

estimate the SQVAR equation by equation. We start by considering the endogenous variable xi at

quantile γ,

xit = w′
itβi(γ) + εγit, (A.1)

where xit is a scalar, i = 1, . . . , n, t = 1, . . . , T , wit is a vector of regressors (in our case, con-

temporaneous values and lags of the endogenous and exogenous variables, a constant, as well as

dummy variables), and βi(γ) is a vector of quantile-specific coefficients. The error term εγit is

assumed to have an asymmetric Laplace distribution of the form

f (εγit) = γ (1− γ) [σi(γ)]
−1 e−ργ(εγit), (A.2)

where σi(γ) is a scale parameter, and ργ (ε) ≡ ε(γ − I(ε < 0)) is the standard quantile regression

check function; see also Koenker and Bassett Jr (1978) and Engle and Manganelli (2004). It is

clear from (A.2) that minimizing the usual quantile regression objective function, as e.g. defined in

Koenker and Bassett Jr (1978), is equivalent to maximizing a corresponding asymmetric Laplace

log-likelihood; see e.g. Yu and Moyeed (2001).

An asymmetric Laplace random variable can be represented as a mixture of a standard normal

and an exponential random variable (Yu and Moyeed, 2001, Kozumi and Kobayashi, 2011). As a

result, (A.1) can be restated as

xit = w′
itβi(γ) + θ(γ)νit(γ) + τ̃(γ)

√
σi(γ)νit(γ)u

γ
it, (A.3)
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where τ̃ 2(γ) = 2
γ(1−γ)

, θ(γ) = 1−2γ
γ(1−γ)

, uγit ∼ N (0, 1), νit(γ) ∼ E (σi(γ)), and where E (ẽ) denotes

an exponential distribution with mean ẽ.

Since this section exclusively considers univariate regressions at a single quantile γ, we drop

the quantile notation for convenience and leave the dependence implied. The mixture representa-

tion in (A.3) allows us to draw from the conditional posterior distributions using an appropriate set

of prior distributions. We follow Kozumi and Kobayashi (2011) and choose the prior distributions

βi ∼ N
(
µβ,i, λiΣβ,i

)
, σi ∼ IG

(
ασ,i, ζσ,i

)
, (A.4)

where IG (α, ζ) denotes an inverse-gamma distribution with shape and scale parameters α and ζ .

The addition of the scalar λi ≥ 0 to the prior variance of βi lets us control the looseness/tightness

of the respective prior. A lower value of λi implies a tight, informative prior, while a high value of

λi implies a loose, uninformative prior. We give λi its own prior density and let λi ∼ IG (αλ, ζλ).

With the above priors in place, and continuing to rely on Kozumi and Kobayashi (2011) and

Khare and Hobert (2012), we end up with the following four-step Gibbs sampler for all nq equa-

tions, dropping subscript i for convenience. Steps 1 – 3 are identical to those in Khare and Hobert

(2012). Step is 4 is new but straightforward; Section A.3 provides a derivation.

1. Draw σ|x,w, . . . ∼ IG
(
ᾱσ, ζ̄σ

)
,

where ᾱσ = ασ +
3
2
T , and ζ̄σ = ζσ +

∑T
t=1

(xt−w′
tβ−θνt)

2

2τ̃2νt
+
∑T

t=1 νt.

2. Draw β|x,w, . . . ∼ N
(
µ̄β, Σ̄β

)
,

where Σ̄−1
β =

∑T wtw′
t

τ̃2σνt
+ λ−1Σ−1

β , and µ̄β = Σ̄β

[∑T wt(xt−θνt)
τ̃2σνt

+ λ−1Σ−1
β µβ

]
.

3. Draw ν−1
t |xt, wt, . . . ∼ IGN (κ̄1, κ̄2), where IGN denotes the inverse Gaussian distribu-

tion, with κ̄1 =
√
θ2+2τ̃2

|xt−w′
tβ|

, and κ̄2 = θ2+2τ̃2

στ̃2
.

4. Draw λ|β, . . . ∼ IG
(
ᾱλ, ζ̄λ

)
,

where ᾱλ = αλ +
k̃
2
, ζ̄λ = ζλ +

1
2

(
β − µβ

)′
Σ−1

β

(
β − µβ

)
, and k̃ is the dimension of β (the

number of regressors).

2



To conclude, we note that the Gibbs sampler of Kozumi and Kobayashi (2011) and Khare and

Hobert (2012), steps 1–3 above, comes with theoretical guarantees: draws from the sampler con-

verge to the intractable true posterior, and do so at a geometric rate. To prove this result, Khare

and Hobert (2012) make no assumptions regarding the dimensions of the data (so that the result

continues to hold even if k̃ were large relative to T ).

A.2 Specification of prior densities

As explained in the main text, we first estimate the SQVAR model’s parameters for U.S. data. We

do so using the same model specification (i.e., variables, deterministic terms, number of lags and

zero restrictions). Next, we let these estimates inform the euro area parameters’ priors. We are thus

taking advantage of decades of data available for the U.S. between 1973Q1 and 2022Q4. Both the

U.S. and euro area economies are advanced, market-based economies with institutional similarities

along many dimensions.

A.2.1 Priors for U.S. data

We need to specify the prior parameters µUS
β,i

ΣUS
i , αUS

σ,i , ζUS

σ,i
, αUS

λ,i , and ζUS

λ,i
. For U.S. data, we

keep the prior parameters homogeneous across quantiles. We have therefore dropped a potential

dependence on γ.

We employ a Minnesota prior for the vector of coefficients βUS
i (see, e.g., Litterman, 1986,

Luetkepohl, 2005, p. 225, Giannone et al., 2015). This means that the prior density is Gaussian,

and pointing to a persistent autoregressive process of order one. Specifically, we set the coefficient

in βUS
i referring to variable i’s own first lag equal to either 0.9 or 1, depending on the variable. For

the CISS, the financial cycle, and the real GDP growth rate, the own-lag coefficient is set to 0.9;

for CPI inflation and the Federal Funds Rate the coefficient is set to one. All other elements of βUS
i

are given a prior mean of zero.

We further specify the Minnesota prior’s covariance matrix ΣUS
β,i as diagonal, with σUS

β,ij,l the

element corresponding to the lth lag of the jth endogenous variable in equation i. The diagonal
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elements are given by

σUS
β,ij,l = ϕ2

0 if i = j, l = 0

σUS
β,ij,l =

(
ϕ0

lϕ3

)2
if i = j, l > 0

σUS
β,ij,l =

(
ϕ0ϕ1

σ̂i

σ̂j

)2

if i ̸= j, l = 0

σUS
β,ij,l =

(
ϕ0ϕ1

lϕ3
σ̂i

σ̂j

)2

if i ̸= j, l > 0

σUS
β = (ϕ0ϕ2)

2 otherwise,

where ϕ0 is a general tightness parameter, ϕ1 a tightness parameter on endogenous variables other

than variable i, ϕ2 a tightness parameter on exogenous variables and deterministic terms, and ϕ3

a tightness parameter controlling the importance of lags of endogenous variables. We choose

ϕ0 = 0.2, ϕ1 = 0.5, ϕ2 = 105, and ϕ3 = 1. These are common choices in the literature (see,

e.g., Litterman, 1986). Parameter σ̂i denotes the standard error of the residuals from a univariate

quantile autoregression on endogenous variable i at the median. Finally, we set αUS
σ,i = ζUS

σ,i = 0.01,

corresponding to a non-informative prior for the scale parameter σ. We also set αUS
λ,i = 3 and

ζUS
λ,i = 6, implying a prior mean and a prior standard deviation of 3 for λi.

A.2.2 Priors for euro area data

We set the euro area prior parameters for βEA
i (γ) to match the corresponding posterior moments

obtained from U.S. data. Specifically,

µEA

β,i
(γ) =

1

NS

NS∑
s=1

β̂US
i,s (γ)

ΣEA
β,i (γ) =

1

NS

NS∑
s=1

(
β̂US
i,s (γ)− µEA

β,i
(γ)

)2

,

where β̂US
i,s are the NS posterior draws of βUS

i . All other euro area hyperparameters are given

values identical to their U.S. counterparts. Specifically, αEA
σ,i = ζEA

σ,i
= 0.01, αEA

λ,i = 3, and

ζEA

λ,i
= 6.
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A.3 Posterior density for λ

This section derives the fourth step of the Gibbs sampler in Section A.1. This step is introduced

to estimate a tightness parameter that determines the weight given to the U.S. parameter estimates

in forming the priors for estimating the euro area model. Allowing the data to help decide on

the tightness of the prior density across quantiles and variables appears particularly appropriate in

our case, as we have no reliable prior knowledge of how informative the Minnesota prior is for

the parameters of the U.S. model at any given quantile, nor how informative the U.S. posterior

density is for the parameters of the euro area model. Bayesian updating of the tightness parameter

through a hyper-prior is a common solution, for example, in the literature on shrinkage in Bayesian

regression models (see e.g. Huber and Feldkircher, 2019 and Korobilis and Pettenuzzo, 2019). In

addition, such updating is common in the analysis of sequential medical trials (see, e.g., Ibrahim

et al., 2015 and Ibrahim and Chen, 2000).

To arrive at the conditional posterior distribution for λ, again dropping subscripts γ and i for

clarity, we start by writing out the kernel of the joint posterior distribution, P (·), with the terms

relating to λ,

P (λ|·) ∝ |λΣβ|−
1
2 exp

{
−1

2

(
β − µ

β

)′
λ−1Σ−1

β

(
β − µ

β

)}
× λ−αλ−1 exp

{
−ζ

λ
λ−1

}
,

where the first term comes from the normally distributed prior for β and the second term from the

inverse-gamma prior distribution for λ. Rewriting the above expression, we obtain

P (λ|·) ∝ λ−αλ−
k̃
2
−1 exp

{
−λ−1

(
1

2

(
β − µ

β

)′
Σ−1

β

(
β − µ

β

)
+ ζ

λ

)}
∝ IG

(
ᾱλ, ζ̄λ

)
,

where ᾱλ = αλ +
k̃
2

and ζ̄λ = ζλ +
1
2

(
β − µβ

)′
Σ−1

β

(
β − µβ

)
, and where k̃ denotes the number of

regressors. As a result, we can immediately draw λ from its posterior distribution conditional on a

posterior draw of β.
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B Technical details

B.1 Quantile impulse response functions

This section presents the simulation algorithm used to obtain quantile impulse response func-

tions (QIRFs). For a given set of coefficients, we require two sets of conditional distributions to

compare: First, we require the conditional forecast distribution of the data in a baseline scenario

without an initial shock. Second, we require the conditional forecast distribution of the data in a

counterfactual scenario in which a single shock arrives in the first forecasting period. The QIRFs

are obtained as the difference between the latter and the former distribution.

B.1.1 Notation

Throughout this section, we represent the SQVAR(p) as

xt = ω(γ) + A0(γ)xt +

p∑
j=1

Aj(γ)xt−j +B(γ)dt +

p∑
j=0

Cj(γ)zt−j + εγt , (B.1)

for a given γ ≡ [γ1, . . . , γn]
′, and recall the identifying assumption Qγ (ε

γ
t |Ωt) = 0n×1. Simi-

larly, each of the r exogenous variables is modeled as a univariate quantile autoregressive (QAR)

process,

zvt = Wv(γ
∗
v) +

p∑
j=1

Aj,v(γ
∗
v)zv,t−j + Bv(γ

∗
v)dt + ξ

γ∗
v

vt , (B.2)

for γ∗ ≡ [γ∗1 , . . . , γ
∗
v , . . . , γ

∗
r ]

′. To establish notation for the remainder of this section, we let H

denote the forecast horizon, o the forecast origin, M the number of posterior draws required for

posterior inference of the QIRFs, and S the number of forward simulations for each posterior draw.

We assume that G = {0.05, 0.10, . . . , 0.90, 0.95} is a sufficiently large set of q = 19 quantiles

distributed symmetrically around the median. We obtain NS = 2, 500 draws of each βi (γ), after

discarding a burn-in sample of NB = 2, 500.
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B.1.2 Algorithm

The algorithm proceeds as follows.

1. Obtain posterior draws. Obtain and store NS posterior draws for all the SQVAR’s pa-

rameters in (B.1) and (B.2) at all quantiles, see Appendix A.1. We store them in a four-

dimensional array of dimensions [n+ r]× [p(n+ r) + r + 1 + k]× q ×NS .

2. Choose forecast origin. Fix the initial conditions for the endogenous variables xo−(p−1):o

and exogenous variables zo−(p−1):o. We use the unconditional median over the estimation

sample for all variables.

3. Set m = 1.

3.1. Draw parameters. Let β̂(m) be a random draw from the set ofNS posterior draws, and

β̂
(m)
i (γ̌) the subset of parameters corresponding to the posterior draw of βi for some

quantile γ̌.

3.2. Let ϵ̂o+1 be an n× 1 vector of zeros.

3.3. Set s = 1.

3.3.1. Set h = 1.

3.3.1.1. Draw quantiles at random. Obtain n random draws from the uniform dis-

tribution U (0, 1) and map them to the corresponding quantiles in G based on

proximity. Stack the mapped quantiles in the n× 1 vector ϱ. Define the r × 1

vector ϱ∗ in a similar fashion.

3.3.1.2. Set up SQVAR system matrices. Let fAj

(
β̂
(m)
i (γ̌)

)
be a mapping from pos-

terior draw β̂
(m)
i (γ̌) to the ith row of Aj in (B.1). Define similar mappings for

the remaining matrix coefficients. Using these mappings, stack the variable-
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specific posterior draws into matrices of quantile coefficients, such that

Ão+h
j =



fAj

(
β̂
(m)
1 (ϱ1)

)
...

fAj

(
β̂
(m)
i (ϱi)

)
...

fAj

(
β̂
(m)
n (ϱn)

)


ω̃o+h =



fω

(
β̂
(m)
1 (ϱ1)

)
...

fω

(
β̂
(m)
i (ϱi)

)
...

fω

(
β̂
(m)
n (ϱn)

)



C̃o+h
j =



fCj

(
β̂
(m)
1 (ϱ1)

)
...

fCj

(
β̂
(m)
i (ϱi)

)
...

fCj

(
β̂
(m)
n (ϱn)

)


B̃o+h =



fB

(
β̂
(m)
1 (ϱ1)

)
...

fB

(
β̂
(m)
i (ϱi)

)
...

fB

(
β̂
(m)
n (ϱn)

)


for j = 0, . . . , p and h = 1, . . . , H . Define the corresponding matrices for the

exogenous variables analogously using ϱ∗, resulting in matrices W̃o+h
v , Ão+h

j,v

and B̃o+h
v .

3.3.1.3. Iterate exogenous variables forward. Compute the conditional forecast of

each of the r exogenous variables, z(s)o+h, using (B.2) and the relevant quantile

coefficients determined in the previous step as

z
(s)
v,o+h = W̃o+h

v +
P∑

j=1

Ão+h
j,v z

(s)
v,o+h−j + B̃o+h

v dt+h.

3.3.1.4. Iterate endogenous variables forward. Compute the conditional forecast

of x(s)o+h using (B.1) and the relevant quantile coefficients determined in step

3.3.1.2 as

x
(s)
o+h =

(
I − Ão+h

0

)−1

 ω̃o+h +
∑P

j=1 Ã
o+h
j x

(s)
o+h−j

+B̃o+hdt+h +
∑P

j=0 C̃
o+h
j z

(s)
o+h−j + ϵ̂o+h


8



3.3.1.5. If h < H , set h = h+ 1 and return to step 3.3.1.1.

3.3.2. If s < S, set s = s+ 1 and return to step 3.3.1.

3.4. Obtain predicted quantiles. Let x̌o+h = {x(s)o+h}Ss=1 be the set of S simulated forecasts

of xo+h. Compute the γth conditional quantile forecast of xi,o+h as

Qγ (xi,o+h|Ωo) = Qγ (x̌i,o+h) ,

where Qγ (·|Ωo) is the γth quantile conditional on the information set Ωo, and letting

Qγ (·) denote the empirical quantile function. This concludes the baseline (no shock)

forward simulations.

3.5. Choose the shock of interest. Let S be an n× 1 selection vector picking the endoge-

nous variable i to be shocked. (That is, the ith element of S is 1 and 0 otherwise.)

Redefine ϵ̂o+h = ψS, where ψ is a scalar. A common choice of magnitude ψ is the

estimated standard deviation of quantile shocks obtained at the median. Repeat steps

3.3 - 3.4 to obtain the quantile projection conditional on the shock, Qγ (xi,o+h|Ωo, ψ).

3.6. Compute the γth quantile impulse response function as

ι
(m)
γ,i,o+h = Qγ (xi,o+h|Ωo, ψ)−Qγ (xi,o+h|Ωo)

3.7. If m < M , set m = m+ 1 and return to step 3.2.

Posterior inference of the QIRF of the conditional quantile γ of variable i in period o+h is obtained

from the sequence
{
ι
(m)
γ,i,o+h

}M

m=1
.
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B.2 Simulation algorithm for downside risk measures

We obtain measures of downside risks to economic growth between o and o + h by reusing the

simulation algorithm in Section B.1, but now replace steps 3.4-3.6 with the following steps.

3.4. For each forecast horizon, compute the o+ h growth shortfall as

GSτ,(m)
o,o+h =

1

S

S∑
s=1

ỹ
(s)
o+h · 1{ỹ

(s)
o+h < τ},

where ỹ(s)o+h denotes a simulated value for quarterly real GDP growth at time o+ h.

3.5. Compute the final time-o downside risk measure as averages across simulations

AGSτ,(m)
o,o+1:o+h =

1

H

H∑
h=1

GSτ,(m)
o,o+h

Posterior inference is obtained from the sequence
{

AGSτ,(m)
o,o+1:o+h

}M

m=1
. The above steps can simi-

larly be used to compute average growth longrise.
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B.3 Counterfactual scenarios

Rather than moving through the tree of potential future values of xt+h completely at random, as

done in Web Appendix B.2, we may sometimes wish to consider only a subset of paths, or even just

one path, in isolation. Such paths can also be thought of as a ‘counterfactual scenario,’ or model-

based thought experiment, that conditions on an arbitrary but fixed sequence of future shocks.

To this effect, let Γ∗ denote a design matrix of size H × (n + r). Each element of Γ∗ is

either empty or in the interval (0, 1). Any non-empty hth element of the ith column designates the

quantile path to be traveled by variable i in period h in all S simulations. An empty element means

that the path is chosen at random. The matrix Γ∗ can then be readily applied in Step 3.3.1.1 in the

simulation algorithm of Section B.1 to obtain density forecasts in a counterfactual scenario.

An illustration of this principle is given in Figure B.1. There, a single variable, y, is projected

forward for H = 3 periods using two estimated quantiles, γ ∈ {u, d}. An unrestricted projection

as in Figure B.1a yields a total of 23 = 8 unique paths for y to travel along. Consider now the

counterfactual, in which we require y to initially increase, then decrease, and then finally increase

again. This maps to the path satisfying Γ∗ = {u, d, u}′, highlighted by the red dashed lines in

Figure B.1b.

Instead of a fully restricted tree, as illustrated above, one may also consider a partially restricted

tree. In a partially restricted tree, the quantile paths are only fixed for some of the periods or

variables. In the example above, one may, for instance, require that the chosen quantile from

period 1 to 2 is always {d}, while leaving the remaining branches unrestricted. In this case, the

total number of paths that can be traveled equals four
(
Qu,d,u, Qu,d,d, Qd,d,u, Qd,d,d

)
.
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Figure B.1: Illustration of counterfactual scenario analysis through quantile restrictions

Notes: Filled blue lines indicate unrestricted paths, red dashed lines restricted paths, and transparent blue lines the
paths excluded by the imposed restrictions.
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C Data plots

Figure C.1: Euro area and U.S. time series

Notes: Annualised inflation and growth rates are calculated as 400 times the log-difference between quarterly averages.
Sources: European Central Bank, U.S. Bureau of Labor Statistics, U.S. Bureau of Economic Analysis, Board of
Governors of the Federal Reserve System, LSEG, Haver Analytics, and authors’ calculations.
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D Euro area posterior estimates

Figure D.1: Posterior inference for the euro area, ω(γ)

Posterior mean and 95% credible intervals obtained from 2,500 posterior draws. Least squares estimates (in red) for
the conditional mean are provided for comparison.
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Figure D.2: Posterior inference for the euro area, A0(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.3: Posterior inference for the euro area, A1(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.4: Posterior inference for the euro area, A2(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.5: Posterior inference for the euro area, A3(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.6: Posterior inference for the euro area, A4(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.7: Posterior inference for the euro area exogenous variables, C(γ)

Posterior mean and 95% credible intervals are btained from 2,500 posterior draws. Least squares estimates are pro-
vided for comparison.
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Figure D.8: Posterior inference for the euro area dummy variables, B(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure D.9: Posterior means for the euro area tightness parameter, λi(γ)

Posterior mean estimates of λi(γ) are obtained from 2,500 posterior draws.
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Figure D.10: Quantile impulse response functions for the euro area
Impulse response functions implied by the posterior estimates reported in Figures D.1-D.8. Based on 400 draws from the posterior distribution and 20.000 forward
simulations of the conditional distribution for each draw. Shocks are equal to the standard deviation of residuals from the median quantile regression of the respective
variables. Variables are ordered financial cycle (respective first row), HICP inflation (second row), GDP growth (third row), CISS (fourth row), and the 3-month OIS
rate (fifth row). Credible intervals are dashed and at a 95% level. Estimation sample is 1990Q1 to 2022Q4.
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E U.S. posterior estimates

Figure E.1: Posterior inference for the U.S. , ω(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates (in red)
for the conditional mean are provided for comparison.

0.2 0.4 0.6 0.8
-0.04

-0.02

0.00

0.02

0.04

0.06

0.2 0.4 0.6 0.8

-1

0

1

0.2 0.4 0.6 0.8

0

1

2

3

4

0.2 0.4 0.6 0.8

0.00

0.04

0.08

0.12

Figure E.2: Posterior inference for the U.S., A0(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates for the
conditional mean are provided for comparison.
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Figure E.3: Posterior inference for the U.S., A1(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are for
comparison.
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Figure E.4: Posterior inference for the U.S., A2(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are for
comparison.
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Figure E.5: Posterior inference for the U.S., A3(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.6: Posterior inference for the U.S., A4(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.7: Posterior inference for the U.S. exogenous variables, C(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.8: Posterior inference for the U.S. dummy variables, B(γ)

Posterior mean and 95% credible intervals are obtained from 2,500 posterior draws. Least squares estimates are
provided for comparison.
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Figure E.9: Posterior mean estimates for U.S. prior tightness parameter λi(γ)

Posterior mean estimates of λi(γ) are obtained from 2,500 posterior draws.
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Figure E.10: Quantile impulse response functions for the U.S.
Impulse response functions implied by the posterior estimates reported in Figures E.1-E.8. Based on 400 draws from the posterior distribution and 20.000 forward
simulations of the conditional distribution for each draw. Shocks are equal to the standard deviation of residuals from the median quantile regression of the respective
variables. Variables are ordered financial cycle (respective first row), CPI inflation (second row), GDP growth (third row), CISS (fourth row), and the Federal funds rate
(fifth row). Credible intervals are dashed and at a 95% level. Estimation sample is 1973Q1 to 2022Q4.
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