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A Appendix: GPD score and scaling functions

A.1 The GPD score function

This section derives the score (4). Recall the GPD pdf as

p(xt; δt, ξt) =
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1
.

with log-likelihood contribution

lt = ln p(xt; δt, ξt) = − ln(δt)−
(

1 +
1

ξt

)
ln

(
1 + ξt

xt
δt

)
,

where δt > 0, ξt > 0, and xt > 0. Using ξt = exp (f1t), the first element of the score is obtained as

∇1t =
∂l(xt; δt, ξt)

∂f1t
=
∂l(xt; δt, ξt)

∂ξt
· dξt

df1t
,

∂l(xt; δt, ξt)

∂ξt
=

1

ξ2t
ln

(
1 + ξt

xt
δt

)
−
(

1 +
1

ξt

)
xt

δt + ξtxt
,

dξt
df1t

= exp (f1t) = ξt.

Similarly, for δt = exp (f2t), the second element of the score is obtained as

∇2t =
∂l(xt; δt, ξt)

∂f2t
=
∂l(xt; δt, ξt)

∂δt
· dδt

df2t
,

∂l(xt; δt, ξt)

∂δt
=

xt − δt
δt(δt + ξtxt)

,

dδt
df2t

= exp (f2t) = δt.

Combining the two, the unscaled score vector is given by

∇t =

 1
ξt

ln
(

1 + ξt
xt
δt

)
−
(

1 + 1
ξt

)
ξtxt

δt+ξtxt

xt−δt
δt+ξtxt

 .
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A.2 The GPD scaling matrix

This section derives the scaled score (6). To this end we require the [2 × 2] conditional Fisher

information matrix associated with (4),

It = E[∇t∇′t | Ft−1; ft, θ] =

I(11)t I(12)t

I(21)t I(22)t

 . (A.1)

We derive each element in turn.

Element I(11)t

We recall that the score is zero in expectation if the model is well-specified; see Creal et al. (2013).

This implies

∫ ∞
0

1

ξ2t
ln

(
1 + ξt

xt
δt

)
p(xt; δt, ξt)dxt =

∫ ∞
0

(
1 +

1

ξt

)
xt

δt + ξtxt
p(xt; δt, ξt)dxt. (A.2)

The top left element of the conditional Fisher information matrix is

I(11)t = E

[
−
(
∂l(xt; δt, ξt)

∂ξt

)2(dξt
dft

)2

| Ft−1

]
= E

[
−∂

2l(xt; δt, ξt)

∂ξ2t
| Ft−1

]
exp (2ft),

where the last equality uses the fact that ft is fixed for given Ft−1. The expected negative second

derivative is given by

E

[
−∂

2l(xt; δt, ξt)

∂ξ2t
| Ft−1

]
= −

∫ ∞
0

[(
1 +

1

ξt

)
x2t

(δt + ξtxt)2
+

2

ξ2t

xt
δt + ξtxt

− 2

ξ3t
ln

(
1 + ξt

xt
δt

)]
p(xt; δt, ξt)dxt

= −
∫ ∞
0

[(
1 +

1

ξt

)
x2t

(δt + ξtxt)2
+

2

ξ2t

xt
δt + ξtxt

− 2

ξt

(
1 +

1

ξt

)
xt

δt + ξtxt

]
p(xt; δt, ξt)dxt

= −
∫ ∞
0

[(
1 +

1

ξt

)
x2t /δ

2
t

(1 + ξtxt/δt)2
− 2

ξt

xt/δt
1 + ξtxt/δt

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

= −
∫ ∞
0

[(
1 + ξt
ξ3t

)
ξ2t x

2
t /δ

2
t

(1 + ξtxt/δt)2
− 2

ξ2t

ξtxt/δt
1 + ξtxt/δt

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

= −1 + ξt
ξ4t

∫ ∞
1

(ut − 1)2u
−1/ξt−3
t dut +

2

ξ3t

∫ ∞
1

(ut − 1)u
−1/ξt−2
t dut, (A.3)
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where we used (A.2) in the second line, and where the last equality comes from a change of variable

substituting ut = 1 + ξtxt/δt.

It is straightforward to check that

∫ ∞
1

(ut − 1)2u
−1/ξt−3
t dut =

2ξ3t
(1 + ξt)(1 + 2ξt)

,∫ ∞
1

(ut − 1)u
−1/ξt−3
t dut =

ξ2t
(1 + ξt)(1 + 2ξt)

,∫ ∞
1

(ut − 1)u
−1/ξt−2
t dut =

ξ2t
1 + ξt

.

Combining terms yields

I(11)t =
2

(1 + 2ξt)(1 + ξt)
exp (2f1t) =

2ξ2t
(1 + ξt)(1 + 2ξt)

.

Element I(22)t

The bottom right element of the conditional information matrix is given by

I(22)t = E

[
−
(
∂l(xt; δt, ξt)

∂δt

)2( dδt
df2t

)2

| Ft−1

]
= E

[
−∂

2l(xt; δt, ξt)

∂δ2t
| Ft−1

]
exp (2f2t).

The expectation term is given by

E

[
−∂

2l(xt; δt, ξt)

∂δ2t
| Ft−1

]
= −

∫ ∞
0

[
1/δ2t − 2xt/δ

3
t − ξtx2t /δ4t

(1 + ξtxt/δt)2

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

= −
∫ ∞
0

1

δ3t

(
1 + ξt

xt
δt

)− 1
ξt
−3

dxt +

∫ ∞
0

2

δ3t

xt
δt

(
1 + ξt

xt
δt

)− 1
ξt
−3

dxt +

∫ ∞
0

ξt
δ3t

x2t
δ2t

(
1 + ξt

xt
δt

)− 1
ξt
−3

dxt

= − 1

ξtδ2t

∫ ∞
1

u
−1/ξt−3
t dut +

2

ξ2t δ
2
t

∫ ∞
1

(ut − 1)u
−1/ξt−3
t dut +

1

ξ2t δ
2
t

∫ ∞
1

(ut − 1)2u
−1/ξt−3
t dut

= − 1

δ2t (1 + 2ξt)
+

2

δ2t (1 + ξt)(1 + 2ξt)
+

2ξt
δ2t (1 + ξt)(1 + 2ξt)

=
1

δ2t (1 + 2ξt)
, (A.4)

such that

I(22)t =
1

1 + 2ξt
.
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Elements I(12)t and I(21)t

The top right and bottom left elements of the conditional information matrix are given by

I(12)t = I(21)t = E

[
−∂

2l(xt; δt, ξt)

∂ξt∂δt
| Ft−1

]
exp (f1t + f2t).

The derivation proceeds along similar lines as before,

E

[
−∂

2l(xt; δt, ξt)

∂ξt∂δt
| Ft−1

]
= −

∫ ∞
0

[
−xt/ξt

δ2t + ξtxtδt
+ (1 + ξt)

xt/ξt
(δt + ξtxt)2

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

=
1

ξ3t δt

∫ ∞
1

(ut − 1)u
−1/ξt−2
t dut −

1

ξ3t δt

∫ ∞
1

(ut − 1)u
−1/ξt−3
t dut −

1

ξ2t δt

∫ ∞
1

(ut − 1)u
−1/ξt−3
t dut

=
1

ξtδt(1 + ξt)
− 1

ξtδt(1 + 2ξt)

=
1

δt(1 + ξt)(1 + 2ξt)
. (A.5)

As a result,

I(12)t = I(21)t =
ξt

(1 + ξt)(1 + 2ξt)
.

The scaling matrix

Collecting all elements I(11)t – I(22)t we obtain the conditional Fisher information matrix as

It =

 2ξ2t
(1+ξt)(1+2ξt)

ξt
(1+ξt)(1+2ξt)

ξt
(1+ξt)(1+2ξt)

1
1+2ξt

 ,
such that I−1t = LtL

′
t for

Lt =

1 + ξ−1t 0

−1
√

1 + 2ξt

 .

A.3 The GAS(2,1) dynamics for EWMA scheme

Specification (7) leads to a specification for ft as in

(
I2 −B L

)
(1− λ)−1

(
1− λL

)
ft+1 = ω +Ast,
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where L is the lag operator, such that ft follows the score-driven dynamics in (3) with p = 2 and

q = 1, also known as GAS(2,1) dynamics. To see this, first rewrite the first equation in (7) as

(I2 −B L)ft+1 = ω +As̃t,

and then multiply both sides by (1− λL)/(1− λ), using the second equation in (7)

(1− λL)s̃t = (1− λ)st.

to replace (1− λL)s̃t/(1− λ) by st.
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B Tail approximation for heavy-tailed random vari-

ables

B.1 Tail approximation for GPD random variables

Let yt ∼ GPD(α−1t , σt) be the data generating process (DGP) with F (yt) = 1− (1 + yt/(αtσt))
−αt

as its cdf. Let τt be a threshold. In this case, the tail approximation is exact, as we have

Gξt,δt,τ (yt) = P [Yt ≤ yt + τt | Yt > τt]

=
F (yt + τt)− F (τt)

1− F (τt)

= 1− (1 + (yt + τt)/(αtσt))
−αt

(1 + τt/(αtσt))−αt

= 1−
(

1 + τt/(αtσt) + yt/(αtσt)

1 + τt/(αtσt)

)−αt
= 1−

(
1 +

yt

αt(σt + α−1t τt)

)−αt
= 1− (1 + ξtyt/δt)

−1/ξt , (B.1)

for ξt = α−1t and δt,τt = σt + α−1t τt. The EVT GPD tail ‘approximation’ has the same tail

as the original GPD, but a higher scale parameter σt + τt/αt rather than σt. This is intuitive,

as the GPD beyond a high threshold has a flatter tail than at the origin. The scale parameter

δt,τt = σt + α−1t τt increases with the threshold τt, varies positively with the tail shape parameter

α−1, and, importantly, should not be expected to provide a consistent estimate of σt. If σt were

time-invariant (for example because pre-volatility-filtered data were modeled empirically), then the

estimate δt,τt may still vary over time to reflect time-variation in αt.

B.2 Tail approximation for Student’s t random variables

Let yt ∼ t(0, σ2t , αt) be the data generating process with f(yt) the pdf of a Student’s t distribution

with zero mean, scale σ2t , and αt degrees of freedom. Let τt ∈ R be a threshold.

In the simulations, we minimize the Kullback-Leibler divergence between the Student’s t tail

and the GPD tail approximation. Analytically, we can use the following approximate solution. The

rate of tail decline in the extreme tail of the Student’s t and the GPD should coincide, implying a

tail shape of ξ−1t = αt. For the scale, we equate the slope at the origin of the GPD with that of

7



the Student’s t at τt and obtain

δ−1t,τt =
f(τt)

1− F (τt)

τt→∞≈ −f ′(τt)
f(τt)

=
∂ − ln f(τt)

∂τt
=

(1 + α−1t )τt/σ
2
t

1 + τ2t /(αtσ
2
t )

=
(1 + αt)τt
αtσ2t + τ2t

⇔

δt,τt ∼
αtσ

2
t

(1 + αt)τt
+

τt
1 + αt

,

which again depends on αt and increases in τt. For large τt, δt,τt varies inversely with αt, or

positively with ξt = α−1t . As a result, we should not expect δt to coincide with σt.
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C Proof of stationarity, ergodicity and moments of ft

and xt

C.1 Proof of Theorem 1

From the cdf of the GPD, together with Assumption 1, we know that for a standard uniform ut

and for a standard exponentially-distributed εt, we have

ut = 1− (1 + ξtxt/δt)
−ξ−1

t ⇔

− ln(1− ut) = εt = ξ−1t · ln (1 + ξtxt/δt) ⇒

exp(ξtεt) = 1 + ξtxt/δt.

Filling this out into the scaled score expressions evaluated at θ0 ∈ Θ, we get

sξt = ξ−2t (1 + ξt) ln (1 + ξtxt/δt) +
1− (1 + 3ξ−1t + ξ−2t )ξtxt/δt

1 + ξtxt

= ξ−1t (1 + ξt) εt +
1− (1 + 3ξ−1t + ξ−2t )(exp(ξtεt)− 1)

exp(ξtεt)

= (1 + ξ−1t ) εt + exp(−ξtεt)− (1 + 3ξ−1t + ξ−2t )(1− exp(−ξtεt))

and

sδt =
√

1 + 2ξt
xt − δt
δt + ξtxt

=
√

1 + 2ξtξ
−1
t

ξtxt/δt
1 + ξtxt/δt

−
√

1 + 2ξt
1

1 + ξtxt/δt

=
√

1 + 2ξtξ
−1
t

exp(ξtεt)− 1

exp(ξtεt)
−
√

1 + 2ξt
1

exp(ξtεt)

=
√

1 + 2ξtξ
−1
t (1− exp(−ξtεt))−

√
1 + 2ξt exp(−ξtεt).

Now, in order to apply Theorem 3.1 of Bougerol (1993), we first verify the required log-moment

conditions for our bivariate score-driven process {ft}t∈Z. We recall that from (11), ft+1 = Φt (ft; θ0),
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where

Φt (ft; θ0) =

 ωξ

ωδ

+

 aξ 0

0 aδ

 sξt

sδt

+

 bξ 0

0 bδ

 f ξt

f δt

 , (C.1)

such that, by using Lemma 2.2 of Straumann and Mikosch (2006) for any fixed f0 ∈ R2, we obtain

E
[
ln+ ‖Φt (f0; θ0)− f0‖

]
≤2 ln 2 + ln+

∥∥∥∥∥∥ ωξ

ωδ

∥∥∥∥∥∥+ ln+

∥∥∥∥∥∥ aξ 0

0 aδ

∥∥∥∥∥∥+ E

ln+

∥∥∥∥∥∥ sξt

sδt

∥∥∥∥∥∥


+ ln+

∥∥∥∥∥∥ b
ξ − 1 0

0 bδ − 1

∥∥∥∥∥∥+ ln+

∥∥∥∥∥∥ f ξ0

f δ0

∥∥∥∥∥∥ .
It therefore suffices to verify that the scaled score vector st has a finite log-moment. We have that

E

ln+

∥∥∥∥∥∥ sξt

sδt

∥∥∥∥∥∥
 ≤ E

ln+

∥∥∥∥∥∥ (1 + ξ−10 ) εt + exp(−ξ0εt)− (1 + 3ξ−10 + ξ−20 )(1− exp(−ξ0εt))
√

1 + 2ξ0ξ
−1
0 (1− exp(−ξ0εt))−

√
1 + 2ξ0 exp(−ξ0εt)

∥∥∥∥∥∥
 <∞,

since ξ0 ∈ R+ is a fixed real-valued point and, by Assumption 1, we already know that the process

εt is i.i.d. and follows an exponential distribution with unit scale. Hence, we conclude that the

required log-moment conditions are satisfied.

Second, we show how the contraction condition in Assumption 2 is derived. For our bivariate

process {ft}t∈Z it is easy to have the analytical form of the random matrix Φ̇t (ft; θ0), which

can be retrieved by directly taking the first partial derivatives of the mapping in equation (C.1)

with respect to
(
f ξt , f

δ
t

)′
∈ R2. Moreover, to motivate the imposed contraction condition for this

theorem, we repeatedly substitute the stationary and ergodic f̃t = Φt

(
f̃t; θ0

)
and get

f̃t = Φt

(
f̃t; θ0

)
= Φ

(
εt, f̃t; θ0

)
= Φ (εt,Φt−1 (Φt−2 (. . . , θ0) , θ0) , θ0) . (C.2)

Using the chain rule, we then obtain

∂Φt (ft; θ0)

∂f ′t−r
=

r−1∏
i=1

Φ̇t−i (ft−i; θ0)
∂Φt−r (ft−r, θ0)

∂f ′t−r
=

r∏
i=1

Φ̇t−i (ft−i; θ0) .

By Assumption 2, there exist some sufficiently large r ≥ 1 number after which the bivariate process

{ft}t∈Z is contracting. Therefore, by the mean value theorem together with Assumption 2, it follows
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that

∥∥∥ft − f̃t∥∥∥ =

∥∥∥∥Φ (εt,Φt−1 (Φt−2 (. . . ,Φt−r (ft−r, θ0) , θ0) , θ0) , θ0)

− Φ
(
εt,Φt−1

(
Φt−2

(
. . . ,Φt−r

(
f̃t−r, θ0

)
, θ0

)
, θ0

)
, θ0

)∥∥∥∥
≤

∥∥∥∥∥
r∏
i=1

Φ̇t−i
(
f̄t−i; θ0

)∥∥∥∥∥ ∥∥∥ft−r − f̃t−r∥∥∥ ,
where f̄t is on the chord between ft and f̃t. Then, as shown in Theorem 3.1 of Bougerol (1993),

using Assumption 2 we have∥∥∥∥∥
r∏
i=1

Φ̇t−i
(
f̄t−i; θ0

)∥∥∥∥∥ e.a.s.−−−→ 0, r →∞,

and since E
[
ln+

∥∥∥ft − f̃t∥∥∥] = E
[
ln+

∥∥∥Φt−1 (ft−1; θ0)− f̃t
∥∥∥] <∞ for any ft ∈ R2 as proved above,

it follows that
∥∥∥ft − f̃t∥∥∥ e.a.s.−−−→ 0 by a straightforward application of Lemma 2.1 of Straumann and

Mikosch (2006). Finally, the stationarity and ergodicity of xt then follows easily from Krengel

(2011) and the fact that

xt = ξ−1t δt · (exp(ξtεt)− 1) .

This proves the theorem.

C.2 Proof of Theorem 2

Consider the mapping in equation (C.1). By the Minkowsky’s inequality and the mean value

theorem, we have

‖Φt (ft, θ0)‖p ≤
∥∥∥Φt (ft, θ0)− Φt

(
f̃t, θ0

)∥∥∥p +
∥∥∥Φt

(
f̃t, θ0

)∥∥∥p
=
∥∥∥Φ̇t

(
f̄t, θ0

) (
Φt−1 (ft−1, θ0)− Φt−1

(
f̃t−1, θ0

))∥∥∥p +
∥∥∥Φt

(
f̃t, θ0

)∥∥∥p ,
11



where f̄t is on the chord between ft and f̃t. Therefore, by similar arguments as the ones used in

the proof of Theorem 1, we get

‖Φt (ft, θ0)‖p ≤

∥∥∥∥∥
r∏
i=1

Φ̇t−i
(
f̄t−i−1; θ0

)∥∥∥∥∥
p

×
∥∥∥(Φt−i−1 (ft−i−1, θ0)− Φt−i−1

(
f̃t−i−1, θ0

))∥∥∥p +
∥∥∥Φt

(
f̃t, θ0

)∥∥∥p .
Using the condition stated in (14), we can then take expectations and write for all r ≥ 1

E [‖Φt (ft, θ0)‖p] ≤βE
[∥∥∥Φt−r−1 (ft−r−1, θ0)− Φt−r−1

(
f̃t−r−1, θ0

)∥∥∥p]+ E
[∥∥∥Φt

(
f̃t, θ0

)∥∥∥p] (C.3)

≤βt−rE
[∥∥∥Φ0 (f0, θ0)− Φ0

(
f̃0, θ0

)∥∥∥p]+

t−r∑
j=1

βj−1E
[∥∥∥Φt

(
f̃t−j+1, θ0

)∥∥∥p] . (C.4)

Since from (14) we have β ∈ (0, 1), the first term on the right-hand side of the inequality in (C.3)

converges to 0 as t → ∞. Moreover, we note that
{

Φt

(
f̃t−j+1, θ0

)}
t∈Z

is stationary and ergodic,

and hence, the right-hand side of the inequality in (C.3) will eventually converge as t→∞ if and

only if E [‖Φ0 (f0, θ0)‖p] <∞ for any fixed f0 ∈ R2. It is also easy to see that, as f0 ∈ R2 is a fixed

point, and the moments bound E [‖Φ0 (f0, θ0)‖p] <∞ is implied by E [‖s0‖p] <∞. We thus have

E


∥∥∥∥∥∥ sξ0

sδ0

∥∥∥∥∥∥
p ≤ E


∥∥∥∥∥∥ (1 + ξ−10 ) ε0 + exp(−ξ0ε0)− (1 + 3ξ−10 + ξ−20 )(1− exp(−ξ0ε0))

√
1 + 2ξ0ξ

−1
0 (1− exp(−ξ0ε0))−

√
1 + 2ξ0 exp(−ξ0ε0)

∥∥∥∥∥∥
p <∞,

which directly follows from the fact that ξ0 ∈ R+ is fixed, and that ε0 is i.i.d. and exponentially

distributed with unit scale, as implied by Assumption 1.

This proves the theorem.
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D Numerically computing SE and finite-moments re-

gions

To compute the SE and finite-moments regions in Figure 2, we proceed as follows. First, we fix

the deterministic parameters at θ̂, one of the empirical estimates, and vary only two of its elements

over a finely grained mesh of points. Second, for each of these points on the mesh, we approximate

the expectation by a Monte Carlo average. For this, we generate a long sequence of N i.i.d. unit

exponential random variables and construct fi,r = fi,r(f, εi, . . . , εi+r−1, θ̂) as the r-th forward iterate

of

fi,r = ω +B1fi,r−1 +A1 ·


(1 + ξ−1i,r ) · εi+r−1 +

1−(1+3ξ−1
i,r+ξ

−2
i,r )(exp(ξi,rεi+r−1)−1)

exp(ξi,rεi+r−1)

√
1 + 2ξi,r

ξ−1
i,r (exp(ξi,rεi+r−1)−1)−1

exp(ξi,rεi+r−1)



= ω +B1fi,r−1 +A1 ·


(1 + ξ−1i,r ) · εi+r−1 + e−ξi,rεi+r−1 − (1 + 3ξ−1i,r + ξ−2i,r ) ·

(
1− e−ξi,rεi+r−1

)
√

1 + 2ξi,r

(
ξ−1i,r − (1 + ξ−1i,r ) · e−ξi,rεi+r−1

)
 ,

with fi,r = (ln ξi,r, ln δi,r)
′, the deterministic parameters set to the values in θ̂, and every fi,r starting

from the same initial fi,0 ≡ f . This SRE corresponds to the DGP and is optained by substituting

xt = δ · ξ−1t · (exp(ξtεt) − 1) into (7). Note that the score part in this DGP SRE expression no

longer depends on δi,r.

For every i = 1, . . . , N − r + 1 and every r = 1, . . . , rmax, we then compute the maximum of

∥∥∥∥∥∥
r∏
j=1

Φ̇i+j−1

(
fi,j−1; θ̂

)∥∥∥∥∥∥
with respect to the initial value f . The optimization is carried out numerically using a bivariate

grid of f values, yielding the maximizer f̂i,r. This is repeated for every mesh point for θ̂. Finally,

we determine the smallest number r̂ such that

r̂ = min

r = 1, . . . , rmax

∣∣∣∣∣∣ 1

N − r + 1

N−r+1∑
i=1

ln

∥∥∥∥∥∥
r∏
j=1

Φ̇i+j−1

(
f̂i,r; θ̂

)∥∥∥∥∥∥ < 0

 ,

13



or

r̂ = min

r = 1, . . . , rmax

∣∣∣∣∣∣ 1

N − r + 1

N−r+1∑
i=1

∥∥∥∥∥∥
r∏
j=1

Φ̇i+j−1

(
f̂i,r; θ̂

)∥∥∥∥∥∥
p

< 1

 ,

depending on whether we want to visualize the SE or the finite-moments region.

The plot is then the contour plot of r̂.

The matrix products of Φ̇ can be numerically unstable for small values of ξt. To resolve these

instabilities, we substitute the analytical expressions in these cases by Taylor-series expansions of

exp(−ξtεt), combining terms and removing terms of the order ξat for a < 0 that cancel. Only

afterwards, we then compute the numerical result. As a cutoff, we take ξt < 10−5. Around this

point, the numerical calculations with or without the approximation give the same results.
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E Consistency and Asymptotic Normality of the MLE

In this appendix, we first derive the partial derivatives of the log-likelihood function and our

score-driven process up to third-order. We then discuss the proof for consistency and asymptotic

normality of the MLE.

E.1 Derivatives of the log-likelihood function

For a generic θ =
(
(θξ)′, (θδ)′

)′
, where θξ =

(
ωξ, aξ, bξ

)
and θδ =

(
ωδ, aδ, bδ

)
, denote with IN ∈

RN×N the N ×N identity matrix and KNN the commutation matrix.

We first recall that the log-likelihood function evaluated at θ ∈ Θ is defined as

L(θ|FT ) =
1

T ∗

T∑
t=1

(
− ln (δt(θ))−

(
1 +

1

ξt(θ)

)
ln

(
1 + ξt(θ)

xt
δt(θ)

))
.

Then, by direct calculations, we obtain the score vector

∂L(θ|FT )

∂θ
=

1

T ∗

T∑
t=1

(
∂ft(θ)

(∂θ)′

)′
∇t =

1

T ∗

T∑
t=1

∇ξt (θ)∂ft(θ)∂θξ

∇δt (θ)
∂ft(θ)
∂θδ

 , (E.1)

where

∇t(θ) =

∇ξt (θ)
∇δt (θ)

 =

ξ−1t (θ) ln
(
1 + ξt(θ) δ

−1
t (θ)xt

)
−
(
1 + ξ−1t (θ)

) ξt(θ)xt
δt(θ)+ξt(θ)xt

xt−δt(θ)
δt(θ)+ξt(θ)xt

 . (E.2)

We also have the Hessian matrix

∂2L(θ|FT )

(∂θ)(∂θ)′
=

1

T ∗

T∑
t=1

((
∂ft(θ)

(∂θ)′

)′
∇2
t (θ)

∂ft(θ)

(∂θ)′
+
(
∇t(θ)′ ⊗ I6

) ∂ vec

(∂θ)′

(
∂ft(θ)

(∂θ)′

))
(E.3)

=
1

T ∗

T∑
t=1

∇ξξt (θ)
∂fξt (θ)

(∂θξ)

∂fξt (θ)

(∂θξ)′
+∇ξt (θ)

∂2fξt (θ)

(∂θξ)(∂θξ)′
∇ξδt (θ)

∂fξt (θ)

(∂θξ)

∂fδt (θ)

(∂θδ)′
+∇ξt (θ)

∂2fξt (θ)

(∂θξ)(∂θδ)′

∇δξt (θ)
∂fδt (θ)

(∂θδ)

∂fξt (θ)

(∂θξ)′
+∇δt (θ)

∂2fδt (θ)

(∂θδ)(∂θξ)′
∇δδt (θ)

∂fδt (θ)

(∂θδ)

∂fδt (θ)

(∂θδ)′
+∇δt (θ)

∂2fδt (θ)

(∂θδ)(∂θδ)′

 ,

15



with

∇2
t (θ) =

∇ξξt (θ) ∇ξδt (θ)

∇δξt (θ) ∇δδt (θ)

 , (E.4)

=

 (δt(θ)−ξt(θ)δt(θ)+2ξt(θ)xt)xt
(δt(θ)+ξt(θ)xt)

2 − ξ−1t (θ) ln
(
1 + ξt(θ)δ

−1
t (θ)xt

)
ξt(θ)xt

δt(θ)−xt
(δt(θ)+ξt(θ)xt)

2

ξt(θ)xt
δt(θ)−xt

(δt(θ)+ξt(θ)xt)
2 − (1 + ξt(θ))

δt(θ)xt
(δt(θ)+ξt(θ)xt)

2

 .

Additionally, the third-order derivatives of the log-likelihood function can be expressed as

∂ vec ∂2L(θ|FT )

(∂θ)′(∂θ)(∂θ)′
=
∂ vec

(∂θ)′

(
∂2L(θ|FT )

(∂θ)(∂θ)′

)
:= Qt(θ), (E.5)

where matrix Qt(θ) ∈ R12×6 collects the third-order derivatives of the log-likelihood function. A

typical element of the matrix Qt(θ) is given by Qkkkt (θ), for k ∈ {ξ, δ}, and takes the form

Qkkkt (θ) =∇kkkt (θ) vec

(
∂fkt (θ)

(∂θk)

∂fkt (θ)

(∂θk)′

)
∂fkt (θ)

(∂θk)′
+∇kkt (θ) vec

(
∂2fkt (θ)

(∂θk)(∂θk)′

)
∂fkt (θ)

(∂θk)′
(E.6)

+∇kkt (θ) (I6 +K66)

(
∂fkt (θ)

(∂θk)
⊗ I6

)
∂2fkt (θ)

(∂θk)(∂θk)′
+∇kt (θ)

∂ vec

(∂θk)′

(
∂2fkt (θ)

(∂θk)(∂θk)′

)
,

where

∇ξξξt (θ) = ξ−1t (θ) ln
(
1 + ξt(θ)δ

−1
t (θ)xt

)
−
(
δ2t (θ) + ξ2t (θ)xt (3xt − δ) + δt(θ)ξt(θ) (δt(θ) + 2xt)

)
xt

(δt(θ) + ξt(θ)xt)
3 ,

∇δδδt (θ) = (1 + ξt(θ))
δt(θ)xt (δt(θ)− ξt(θ)xt)

(δt(θ) + ξt(θ)xt)
3 ,

∇ξξδt (θ) = ∇ξδξt (θ) = ξt(θ)xt
(δt(θ)− xt) (δt(θ)− xtξt(θ))

(δt(θ) + ξt(θ)xt)
3 ,

∇δξδt (θ) = ∇δδξt (θ) = −ξt(θ)xt
δt(θ) (δt(θ)− xt (2 + ξt(θ)))

(δt(θ) + ξt(θ)xt)
3 .
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Derivatives of the score-driven recursions

In the log-likelihood derivatives above, we also need the derivative of the score-driven recursions.

These are given by

∂ft+1(θ)

(∂θ)′
= Φ̇(ft(θ); θ)

∂ft(θ)

(∂θ)′
+ Ut(θ), Ut(θ) =

(
I2 ; ft(θ)

′ ⊗ I2 ; st(θ)
′ ⊗ I2

)
, (E.7)

and

∂2ft+1(θ)

(∂θ)(∂θ)′
= Φ̇(ft(θ); θ)

∂2ft(θ)

(∂θ)(∂θ)′
+
∂ft(θ)

(∂θ)

∂Φ̇(ft(θ); θ)

(∂θ)′
+
∂Ut(θ)

(∂θ)′
. (E.8)

Alternatively, by using the vectorization operator, we can also write the second derivative recursions

as

∂ vec

(∂θ)′

(
∂ft+1(θ)

(∂θ)′

)
=
(
I6 ⊗ Φ̇(ft(θ); θ)

) ∂ vec

(∂θ)′

(
∂ft(θ)

(∂θ)′

)
+

((
∂ft(θ)

(∂θ)′

)′
⊗ I2

)
∂ vec

(∂θ)′

(
Φ̇(ft(θ); θ)

)
+
∂ vec

(∂θ)′
(Ut(θ)) .

Finally, we observe that the third-order derivatives of the score-driven process are

∂ vec

(∂θ)′

(
∂2ft+1(θ)

(∂θ)(∂θ)′

)
:= St(θ),

where the matrix St(θ) collects the third-order derivatives of the score-driven recursion ft(θ). A

typical element of this matrix is given by Skkkt (θ), for k ∈ {ξ, δ}. Using i, j, l to denote the different

elements in the parameter vector θ, it is easy to see that each term is given by Skkkt (θ) =
∂3fkt (θ)

∂θki ∂θ
k
j ∂θ

k
l

,

which takes the form of

∂3fkt+1(θ)

∂θki ∂θ
k
j ∂θ

k
l

=Φ̇(fkt (θ); θ)
∂3fkt (θ)

∂θki ∂θ
k
j ∂θ

k
l

+
∂Φ̇(fkt (θ); θ)

∂θkj

∂2fkt (θ)

∂θki ∂θ
k
l

+
∂Φ̇(fkt (θ); θ)

∂θkl

∂2fkt (θ)

∂θi∂θkj
(E.9)

+
∂2Φ̇(fkt (θ); θ)

∂θkj ∂θ
k
l

∂fkt (θ)

∂θki
+
∂2Uki,t(θ)

∂θkj ∂θ
k
l

∂fkt (θ)

∂θki
.
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E.2 Proof of Theorem 3

From the derivative processes up to third-order of the (bivariate) score-driven process {ft(θ)}t∈Z

given by equations (E.7)–(E.9) above, it is easy to see that each of these follows an SRE of similar

form as the one defined in (11) of the main paper, for each θ ∈ Θ. Hence, when evaluated at the

true parameter vector θ0, the contraction condition given in (12) of Assumption 2 ensures e.a.s.

convergence to a strictly stationary and ergodic solution as a direct consequence of our Theorem

1. Under Assumption 3, we therefore directly obtain the consistency result of the MLE in (i)

by a straightforward application of Lemma 1 of Jensen and Rahbek (2004). More formally, the

consistency and asymptotic normality in Jensen and Rahbek (2004) follows under the following

assumptions:

Assumption 1.

( i) As T ∗ → ∞,
√
T ∗ ∂L(θ0|FT )∂θ

D⇒ N(0,ΩS), with ΩS > 0 and T ∗ =
∑T

t=1 1 {xt > 0} is the

number of POT values in the sample.

( ii) As T ∗ →∞, ∂2L(θ0|FT )
∂θ∂θ′

P→ ΩI , with ΩI > 0.

( iii) maxi,j,l=1,2,3 supθ∈V (θ0)

∣∣∣∂3L(θ|FT )∂θi∂θj∂θl

∣∣∣ < cT , where V (θ0) denotes a neighbourhood of θ0 and cT

is some stochastic sequence that satisfies 0 ≤ cT < c for 0 < c <∞.

In order to prove the asymptotic normality of the MLE in (ii), we first note that by the

contraction condition in (14) of Theorem 2, both the score vector in (E.1) and the first derivative

process in (E.7) evaluated at θ0 satisfy the required Lindeberg condition necessary to apply Brown

(1971)’s CLT for martingales. Hence we get that

√
T ∗
∂L(θ0|FT )

∂θ
⇒N(0,ΩS), ΩS := E

[
∂L(θ0|FT )

∂θ

∂L(θ0|FT )

∂θ′

]
,

as T ∗ →∞, such that (A.1) in Lemma 1 of Jensen and Rahbek (2004) is satisfied.

Furthermore, it is also clear that, under the same assumptions, the Hessian matrix in (E.3) and

the second derivative process in (E.8) evaluated at θ0 are strictly stationary and ergodic with the

appropriate number of bounded moments, such that a direct application of the ergodic theorem
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implies that

−∂
2L(θ0|FT )

(∂θ)(∂θ′)

P−→ −E
[
∂2L(θ0|FT )

(∂θ)(∂θ′)

]
:= ΩI ,

as T ∗ → ∞, such that also (A.2) in Lemma 1 of Jensen and Rahbek (2004) is satisfied. Here we

remark that the Fisher information matrix equality ΩS = ΩI follows because, under the maintained

assumptions, our model is correctly specified. As a result, the conditional density in (2) evaluated

at θ0 and xt satisfies

p(xt; δt, ξt; θ0) = δ−1t (θ0) ·
(

1 + ξt(θ0)
xt

δt(θ0)

)−ξ−1
t (θ0)−1

,

and is the true density. The log-likelihood function L(θ0|FT ) is twice continuously differentiable

and has a bounded moment, which allows us to interchange integration with differentiation.

We are only left with the final condition (A.3) in Lemma 1 of Jensen and Rahbek (2004), which

essentially requires the boundedness of third-order derivatives of the log-likelihood function in a

small neighbourhood of the true parameter θ0. However, to check this condition, we note from

(E.5) that it suffices to show that

E

[
sup

θ∈V (θ0)
‖Qt(θ)‖

]
= E

[
sup

θ∈V (θ0)

∥∥∥∥∂ vec ∂2L(θ|FT )

(∂θ)′(∂θ)(∂θ)′

∥∥∥∥
]
<∞.

Taking into account that the general element of Qt(θ) has the form given in (E.6), repeated appli-

cation of the cr-inequality yields for k ∈ {ξ, δ} that

E

[
sup

θ∈V (θ0)

∥∥∥Qkkkt (θ)
∥∥∥] ≤ c1E[ sup

θ∈V (θ0)

∣∣∣∇kkkt (θ)
∣∣∣ sup
θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)

∥∥∥∥3
]

+ 3c2E

[
sup

θ∈V (θ0)

∣∣∣∇kkt (θ)
∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂2fkt (θ)

(∂θk)(∂θk)′

∥∥∥∥ sup
θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)′

∥∥∥∥
]

+ c3E

[
sup

θ∈V (θ0)

∣∣∣∇kt (θ)∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂ vec

(∂θk)′

(
∂2fkt (θ)

(∂θk)(∂θk)′

)∥∥∥∥
]
. (E.10)

Now, consider the first term in the right-hand side of inequality (E.10), and choose r > 1 such that
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3r ≤ 3 + 3γ for some γ > 0. Then, using Hölder’s inequality with r−1 + s−1 = 1, we get

E

[
sup

θ∈V (θ0)

∣∣∣∇kkkt (θ)
∣∣∣ sup
θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)

∥∥∥∥3
]

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kkkt (θ)
∣∣∣s]}1/s{

E

[
sup

θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)

∥∥∥∥3r
]}1/r

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kkkt (θ)
∣∣∣s]}1/s{

E

[
sup

θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)

∥∥∥∥3+3γ
]}3/(3+3γ)

.

Similarly, for the second term in the right-hand side of inequality (E.10), we first apply Hölder’s

inequality, and then the Cauchy-Schwartz inequality, to obtain

E

[
sup

θ∈V (θ0)

∣∣∣∇kkt (θ)
∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂2fkt (θ)

(∂θk)(∂θk)′

∥∥∥∥ sup
θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)′

∥∥∥∥
]

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kkt (θ)
∣∣∣1+γ]}1/(1+γ)

×

{
E

[
sup

θ∈V (θ0)

∥∥∥∥ ∂2fkt (θ)

(∂θk)(∂θk)′

∥∥∥∥(1+γ)/γ sup
θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)′

∥∥∥∥(1+γ)/γ
]}γ/(1+γ)

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kkt (θ)
∣∣∣1+γ]}1/(1+γ)

×

{
E

[
sup

θ∈V (θ0)

∥∥∥∥ ∂2fkt (θ)

(∂θk)(∂θk)′

∥∥∥∥2(1+γ)/γ
]}γ/(2+2γ){

E

[
sup

θ∈V (θ0)

∥∥∥∥∂fkt (θ)

(∂θk)′

∥∥∥∥2(1+1γ)/γ
]}γ/(2+2γ)

.

Finally, the third (and last) term in the right-hand side of inequality (E.10) can be bounded in a

similar way, since

E

[
sup

θ∈V (θ0)

∣∣∣∇kt (θ)∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂ vec

(∂θk)′

(
∂2fkt (θ)

(∂θk)(∂θk)′

)∥∥∥∥
]

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kt (θ)∣∣∣1+γ
]}1/(1+γ){

E

[
sup

θ∈V (θ0)

∥∥∥∥ ∂ vec

(∂θk)′

(
∂2fkt (θ)

(∂θk)(∂θk)′

)∥∥∥∥(1+γ)/γ
]}γ/(1+γ)

.

To conclude the proof, we note that by using Assumption 4, it follows that there exist a universal

constant 0 < c < ∞ which we can use to upper-bound the inequality in (E.10), and thus verify
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that

E

[
sup

θ∈V (θ0)
‖Qt(θ)‖

]
≤ E

[
max

i,j,k=1,2,3
sup

θ∈V (θ0)

∣∣∣∣ ∂3L(θ|FT )

(∂θi)′(∂θj)(∂θl)′

∣∣∣∣
]
≤ c <∞.

We thus establish that condition (A.3) required for Lemma 1 of Jensen and Rahbek (2004) also

holds true. Together, (A.1) – (A.3) imply the asymptotic normality of the MLE θ̂.
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F Confidence bands for tail shape and tail scale

F.1 Simulation-based confidence bands

Given the maximum likelihood estimate θ̂, confidence (or standard error) bands around f̂t = ft(θ̂)

allow us to visualize the impact of estimation uncertainty. Quantifying the uncertainty of the

estimated parameter paths is important, as classical EVT estimators of time-invariant tail shape

parameters can have sizeable standard errors; see e.g. Hill (1975) and Huisman et al. (2001).

Our confidence bands are based on the variance of f̂t, which we denote by Vt = Var(f̂t). They

are conditional on the estimated paths of the dynamic thresholds τt. There exist two possible ways

to construct these bands. Delta-method-based bands can be devised using a linear approximation

of the non-linear transition function for ft, thus extending Blasques et al. (2016, Section 3.2) to

the case of multiple lags. We provide the equations in Web Appendix F.2 below. In our empirical

illustrations below, however, the linear approximations are typically insufficient to capture the

uncertainty in the highly non-linear and persistent dynamics of f̂t; compare Figure 1. As a result,

delta-method-based bands can become unstable. Therefore, we instead use simulation-based bands

as in Blasques et al. (2016, Section 3.3).

Simulation-based confidence bands build on the asymptotic normality of θ̂. In particular, we

draw S parameter values θ̂s, s = 1, . . . , S from the distribution N(θ̂, Ŵ ), where Ŵ is the estimated

covariance matrix of θ̂ as obtained via the sandwich covariance matrix estimator or via a boot-

strapping procedure. If the finite-sample distribution of θ̂ were known, that could be used instead.

For each draw θ̂s we run the filter f̂st = ft(θ̂
s) for t = 1, . . . , T . This way, we obtain S time-varying

parameter paths f̂ st for s = 1, . . . , S and t = 1, . . . , T . These paths account automatically for all

non-linearities in the dynamics of ft. We obtain the pointwise simulated uncertainty bands of f̂t

by directly calculating the appropriate percentiles over the S draws of f̂st at each t.

F.2 Analytic confidence bands

For completeness, this section provides the expressions needed for the calculation of analytic in-

sample confidence bands around the filtered time-varying parameters f̂t (θ). Such bands visualize

the impact of estimation uncertainty associated with θ̂ on the filtered estimates f̂t. Delta-method-

based bands are devised using a linear approximation of the non-linear transition function for ft.
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As a by-product of our derivation we show how to extend Blasques et al. (2016, Section 3.2) to the

case of a multivariate ft with multiple lags.

If the linear approximation is not appropriate for a given dataset at hand, however, then delta-

method-based bands can become unstable. This happens in our empirical application. In such

cases we recommend using simulation-based bands; see Sections 2.4 and 4.

Recall that ft = (f ξt , f
δ
t )′, where ξt = exp(f ξt ), δt = exp(f δt ), and the transition equations as

ft+1 = ω +As̃t +Bft, (F.1)

s̃t = (1− λ)st + λs̃t,

where ω = (ωξ, ωδ)′, A = diag(aξ, aδ), B = diag(bξ, bδ), and st is given in (6).

In practice, some parameters may need to be restricted. Vector θ̄ = (ωξ, ωδ, aξ, aδ, bξ, bδ, λ)′ ∈

R7×1 collects all deterministic parameters of the model, while θ = (ωξ, ωδ, αξ, αδ, βξ, βδ, λuc)′ col-

lects all unconstrained parameters. The two are related, for example, through aξ = exp(αξ),

aδ = exp(αδ), bξ = Λ(βξ), bδ = Λ(βδ), λ = Λ(λuc), and where Λ(x) = (1 + exp(−x))−1 is the

logistic function. In this way, aξ, aδ > 0 and 0 < bξ, bδ, λ < 1. We proceed with these restrictions,

keeping in mind that some derivatives below would need to be adjusted when other restrictions

were chosen or some parameters were fixed (for example, ωξ = ωδ = 0 and bξ = bδ = 1 ).

Pre-multiplying the factor updating equation (F.1) by (1− λL) yields

(1− λL) ft+1 = (1− λL)ω + (1− λL)As̃t + (1− λL)Bft,

which implies

ft+1 = (1− λ)ω + (λI2 +B)ft − λBft−1 + (1− λ)Ast(xt, ft)

= ϕ(ft, ft−1; θ) ≡ ϕt+1 ∈ R2×1.

We assume that θ̂−θ0∼̇N (0,W ), where W is the asymptotic covariance matrix associated with
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θ̂. A first-order Taylor series expansion around θ0 yields

f̂t+1 − ft+1 ≈
∂ϕt+1

∂θ′0
×
(
θ̂ − θ0

)
+
∂ϕt+1

∂f ′t
· dft
dθ′0
×
(
θ̂ − θ0

)
+
∂ϕt+1

∂f ′t−1
· dft−1
dθ′0

×
(
θ̂ − θ0

)
=

[
∂ϕt+1

∂θ′0
+
∂ϕt+1

∂f ′t
· dft
dθ′0

+
∂ϕt+1

∂f ′t−1
· dft−1
dθ′0

]
×
(
θ̂ − θ0

)
= Gt+1 ×

(
θ̂ − θ0

)
(F.2)

∼ N
(
0, Gt+1WG′t+1

)
,

where we defined

dft+1

dθ′
= Gt+1 =

∂ϕt+1

∂θ′
+
∂ϕt+1

∂f ′t
· dft
dθ′

+
∂ϕt+1

∂f ′t−1
· dft−1
dθ′

. (F.3)

Interestingly, (F.3) is a recursion in Gt+1 for given ∂ϕt+1

∂θ′ , ∂ϕt+1

∂f ′t
, ∂ϕt+1

∂f ′t−1
. Put differently, (F.3)

can be written as

Gt+1 =
∂ϕt+1

∂θ′
+
∂ϕt+1

∂f ′t
·Gt +

∂ϕt+1

∂f ′t−1
·Gt−1, (F.4)

which can be computed in parallel to the recursion for ft itself. We set G1 = G2 = 0 ∈ R2×7 (or to

other sensible values).

The derivative terms in recursion (F.4) can be derived as

∂ϕt+1

∂θ′
= (1− λ)

∂ω

∂θ′
− ω ∂λ

∂θ′

+

(1− λ)sξt
∂aξ

∂θ′

(1− λ)sδt
∂aδ

∂θ′

−Ast ∂λ
∂θ′

+ (1− λ)A
∂st
∂θ′

+ ft
∂λ

∂θ′
+

f ξt · ∂bξ∂θ′
f δt · ∂b

δ

∂θ′

−Bft−1 ∂λ
∂θ′
− λ

f ξt−1 · ∂bξ∂θ′
f δt−1 · ∂b

δ

∂θ′

 , (F.5)

∂ϕt+1

∂f ′t
= λI2 +B + (1− λ)A

∂st
∂f ′t

, (F.6)

∂ϕt+1

∂f ′t−1
= −λB,

where ∂st
∂θ′ = 0 (see (6)).
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The derivative terms needed in (F.5) are

∂ωξ

∂θ′
=
[
1 0 0 0 0 0 0

]
∂ωδ

∂θ′
=
[
0 1 0 0 0 0 0

]
∂aξ

∂θ′
=
[
0 0 exp(αξ) 0 0 0 0

]
∂aδ

∂θ′
=
[
0 0 0 exp(αδ) 0 0 0

]
∂bξ

∂θ′
=
[
0 0 0 0 Λ(βξ)[1− Λ(βξ)] 0 0

]
∂bδ

∂θ′
=
[
0 0 0 0 0 Λ(βδ)[1− Λ(βδ)] 0

]
∂λ

∂θ′
=
[
0 0 0 0 0 0 Λ(λuc)[1− Λ(λuc)]

]
,

where Λ(x) = (1 + exp(−x))−1 remains the logistic function. Finally, the expression ∂st
∂f ′t

in (F.6)

can be derived as ∂st
∂f ′t

= ∂st
∂(ξt,δt)′

· ∂(ξt,δt)
∂f ′t

= ∂st
∂(ξt,δt)′

· diag(ξt, δt), where

∂sξt
∂ξt

=
ln
(
xtξt
δt

+ 1
)

ξ2t
+
xt

(
1
ξ2t
− 1
)

δt + xtξt
−
xt

(
δt − xt

(
ξt + 1

ξt
+ 3
))

(δt + xtξt)
2

−
2 ln

(
xtξt
δt

+ 1
)

(ξt + 1)

ξ3t
+

xt (ξt + 1)

δtξ2t

(
xtξt
δt

+ 1
) ,

∂sξt
∂δt

=
xt (ξt + 1) (2δt − xt)

δt(δt + xtξt)
2 ,

∂sδt
∂ξt

=
(δt − xt) (xt − δt + xtξt)

(δt + xtξt)
2√2ξt + 1

,

∂sδt
∂δt

= −xt
√

2ξt + 1 (ξt + 1)

(δt + xtξt)
2 .

The factor variance is given by Vt+1 = Var
(
f̂t+1|xt, ft, θ

)
= Gt+1WG′t+1, evaluated at θ = θ̂.

In a standard fashion we obtain a asymptotic 95% confidence interval for f̂k,t+1 as

[
f̂k,t+1 − 1.96

√
Vkk,t+1, f̂k,t+1 + 1.96

√
Vkk,t+1

]
,

where k = 1, 2 indexes the respective element of f̂t+1 and matrix Vt+1. Asymmetric confidence

bands for (ξ̂t, δ̂t)
′ = exp(f̂t) can be obtained from the confidence bands for f̂t by exponentiation.
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G Derivation of EVT-based market risk measures

This section derives the conditional market risk measures in Section 2.5.

To derive the one-step-ahead VaR, we note that

G(yt) = 1−G(yt) = P(Yt > yt) = P(Yt > τt)P(Yt > yt|Yt > τt) = G(τt)F (xt),

where the third equality sign uses a standard conditioning argument, and xt = yt− τt. We can use

this result to obtain VaRγ(Yt | Ft−1, θ) = qγt (Yt) by setting

G(yt) = G(τt)F (xt) = 1− γ

⇐⇒ t∗

t
(1 + ξtδ

−1
t xt)

− 1
ξt = 1− γ

⇐⇒ (1 + ξtδ
−1
t (qγt (Yt)− τt)) =

(
1− γ
t∗/t

)−ξt
⇐⇒ qγt (Yt) = τt + δtξ

−1
t

[(
1− γ
t∗/t

)−ξt
− 1

]
,

where t∗/t serves as an estimator of G(τt). This expression coincides with the expression given in

the main text.

The Expected Shortfall ESγ(Yt) is given by

ESγ(Yt) =
1

1− γ

∫ 1

γ
qst (Yt)ds

=
VaRγ(yt | Ft−1, θ)

1− ξt
+
δt − ξtτt
1− ξt

,

which is derived by moving constant terms in front of the integral and noting that

∫ 1

γ
(1− s)−ξtds =

(1− γ)1−ξt

1− ξt

for ξt < 1.
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H Simulation results

H.1 Additional figures for the first set of DGPs

This section presents two additional figures associated with our first simulation study in Section 3

(DGP1).

Figures H.1 and H.2 compare median estimated parameter paths for ξ̂t, ξ̂t, V̂aR
0.99

, and ÊS
0.99

to their (pseudo-)true values. Figure H.1 refers to simulations from a GPD conditional density

(Paths 1 – 4), for which the GPD conditional density is exact. Figure H.2 refers to simulations

from a Student’s t conditional density (Paths 1 – 4), for which the GPD conditional density is

only approximate for any finite value of τt <∞. In the presence of misspecification, score updates

continue to minimize the local Kullback-Leibler divergence between the true conditional density

and the model-implied conditional density, and remain optimal in this sense; see Blasques et al.

(2015). The time-varying thresholds τt evolve according to (9) at a 1− κ = 5% tail probability.
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Figure H.1: Simulation results for GPD data

Simulation results for yt ∼ GPD(α−1
t , σt) with time-varying tail shape α−1

t and scale σt. Rows
refer to different parameter paths (1) – (4); see Section 3.2. Columns refer to filtered estimates
of ξt, δt, VaRt, and ESt, respectively. Pseudo-true values are reported in solid red. Median
filtered values are reported in solid black. The first two columns also indicate the lower 5% and
upper 95% quantiles of filtered tail shape and tail scale estimates. The time-varying threshold τ̂t
is estimated based on the recursive specification (9) in conjunction with the objective function (17).
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Figure H.2: Simulation results for Student’s t data

Simulation results for yt ∼ t(0, , σt, α
−1
t ) with time-varying scale σt and tail shape α−1

t . Rows
refer to different parameter paths (1) – (4); see Section 3.2. Columns report filtered estimates of
ξt, δt, VaRt, and ESt, respectively. Pseudo-true values are reported in solid red. Median filtered
values are reported in solid black. The first two columns also indicate the lower 5% and upper
95% quantiles of filtered estimates. The time-varying threshold τ̂t is estimated based on the
recursive specification (9) in conjunction with the objective function (17).
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H.2 The second set of DGPs

Simulation setup

Empirical estimates of the autoregressive parameters bξ and bδ can be close to one; see Section 4.

This section therefore investigates the effect of covariates and (near-)unit root type dynamics on

the time-varying parameter paths and the deterministic parameter estimates and their standard

errors in a second simulation design. Specifically, we simulate 100 samples from a GPD(xt; ξt, δt)

density, with T=25,000 observations each, thus abstracting from any misspecification effects. The

factor ft = (ln ξt, ln δt)
′ follows the transition equation

ft+1 = ω +Ast +Bft + Czt, (H.1)

where matrices ω, A, B, and C take four different sets of values. As a first case, we consider a slowly

mean-reverting factor process with ω = (0.50, 1.00)′, A = diag(0.03, 0.07), B = diag(0.98, 0.98),

and C = 0. The second case considers an integrated factor process: B = I2, while ω, A, and C

remain unchanged. A third and fourth case are identical to the first and second case, except that

now C = (−3,−1.5)′ in (8) for an observed variable zt. As our zt we use the central bank purchases

of Italian sovereign bonds as considered in our second application in Section 4.2.

Simulation results

We now turn to the simulation results for DGP2. Table H.1 presents RMSEs associated with

the time-varying parameters ξt and δt and the deterministic parameters aξ and aδ. We consider

two settings: with (bottom panel) and without (top panel) a covariate. Within each of these, we

consider a stationary (GAS) and unit root (iGAS) DGP (in columns), as well as the corresponding

model specifications (in rows). Figure H.3 provides more results in the form of representative draws

of ξ̂t and δ̂t for each of the four cases, and results on standard error estimates for aξ and aδ.

Table H.1 suggests that both the GAS and the iGAS models work well if they are correctly

specified (iGAS row and iGAS column, or GAS row and GAS column, etc.). In particular, the

estimated ξ̂t and δ̂t tend to be closely aligned to their true values. Also the (slightly) misspecified

cases of a GAS model for an iGAS DGP and vice versa continue to work reasonably well: ξt and

δt remain close to their true paths.
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Table H.1: RMSE outcomes for DGP2

The entries in the table are the RMSEs associated with the filtered tail parameters ξt and δt and with the
estimates of the deterministic parameters aξ and aδ, based on simulations. Top panel: We simulate from
iGAS or GAS models (columns 2–5 and 6–9) and estimate back both iGAS and GAS models (rows 4 and
5). Bottom panel: We simulate as before, but also include an additional explanatory covariate zt in both
the DGP and empirical model. These extended models are labeled iGAS-X and GAS-X.

Model DGP

ξ̂t δ̂t aξ aδ ξ̂t δ̂t aξ aδ

iGAS GAS
iGAS 0.047 0.192 0.005 0.008 0.097 0.287 0.008 0.011
GAS 0.124 0.171 0.018 0.014 0.052 0.052 0.012 0.010

iGAS-X GAS-X
iGAS-X 0.071 0.176 0.008 0.009 0.172 0.167 0.010 0.011
GAS-X 0.125 0.204 0.016 0.010 0.061 0.056 0.013 0.011

When investigating the standard errors of the deterministic parameter estimates, Table H.2

suggests that, while parameter point estimates are close to their true values, the usual asymptotic

standard error estimates based on the inverse Hessian or the sandwich estimates are not necessarily

reliable in the two iGAS cases. In our set-up, these common estimates of the standard errors

are typically too large, providing too conservative inference. A bootstrap procedure tailored to

integrated processes could then be used to avoid this issue; see for instance Boswijk et al. (2021).

Figure H.3 plots example estimates of ξ̂t and δ̂t that are associated with one particular draw

for each of the four cases. Table H.2 reports the standard error estimates associated with the

deterministic parameters.
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Figure H.3: Tail shape and scale estimates from simulated data: one draw

Estimated tail shape ξ̂t and tail shape δ̂t parameters for DGP2. First row: iGAS DGP and iGAS
estimates (correctly specified). Second row: iGAS DGP and GAS estimates (misspecified). Third
row: GAS DGP and iGAS estimates (misspecified). Fourth row: GAS DGP and GAS estimates (cor-
rectly specified). Factors of ξt and δt are initialized with a static GPD model using the first 250 observations.
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Table H.2: Simulation results: standard errors using different methods
Standard error estimates for the dynamic tail shape model’s deterministic parameters. We first simulate
from iGAS and GAS models, and then estimate back all parameters based on both iGAS and GAS
specifications (top half). We then include an exogenous factor zt, denoted iGAS-X or GAS-X in both the
DGP and the statistical model (bottom half). Columns ParValue and EstValue report average (across
simulations) constrained and unconstrained parameter estimates. StdErrE denotes the standard deviation of
the parameter estimates. Standard error estimates refer to the Empirical Hessian estimator (StdErrH), the
Outer Product of the Gradient estimator (StdErrO), and a Sandwich covariance matrix estimator (StdErrS).

ParValue EstValue StdErrE StdErrH StdErrO StdErrS

DGP: iGAS, Estimate: iGAS
αξ 0.030 -3.534 0.153 0.265 0.267 0.270
αδ 0.069 -2.682 0.112 0.140 0.136 0.145

DGP: iGAS, Estimate: GAS
αξ 0.028 -3.606 0.309 0.353 0.369 0.376
αδ 0.069 -2.690 0.167 0.149 0.150 0.150
βξ 0.996 5.986 0.913 0.907 1.028 0.875
βδ 0.997 5.916 0.675 0.688 0.691 0.691
ωξ 1.468 1.468 1.667 0.955 1.205 0.833
ωδ 2.054 2.054 3.641 1.280 1.238 1.334

DGP: GAS, Estimate: iGAS
αξ 0.015 -4.465 0.885 0.749 0.627 1.026
αδ 0.064 -2.761 0.200 0.163 0.132 0.205

DGP: GAS, Estimate: GAS
αξ 0.033 -3.481 0.393 0.544 0.613 0.524
αδ 0.068 -2.693 0.148 0.172 0.175 0.172
βξ 0.968 3.702 0.754 0.819 1.031 0.717
βδ 0.978 3.839 0.313 0.370 0.375 0.369
ωξ 0.499 0.499 0.027 0.046 0.046 0.046
ωδ 1.003 1.003 0.079 0.098 0.098 0.098

DGP: iGAS-X, Estimate: iGAS-X
αξ 0.029 -3.588 0.306 0.348 0.341 0.459
αδ 0.068 -2.695 0.138 0.132 0.125 0.171
cξ -2.562 -2.562 0.996 1.298 5.666 1.380
cδ -1.568 -1.568 0.242 0.257 0.257 0.313

DGP: GAS-X, Estimate: iGAS-X
αξ 0.029 -3.693 0.949 0.602 0.911 0.622
αδ 0.071 -2.650 0.153 0.142 0.120 0.172
cξ -0.221 -0.221 0.135 0.195 0.160 0.271
cδ -0.663 -0.663 0.236 0.282 0.298 0.276

DGP: iGAS-X, Estimate: GAS-X
αξ 0.023 -4.913 2.959 6.308 10.322 1.708
αδ 0.067 -2.709 0.155 0.132 0.129 0.145
βξ 0.999 8.404 2.969 15.301 18.600 8.561
βδ 1.000 10.411 2.675 20.271 33.219 15.809
ωξ 2.184 2.184 3.140 15.338 19.571 18.477
ωδ 3.034 3.034 2.809 35.958 40.176 23.683
cξ -2.394 -2.394 1.287 2.244 4.227 2.827
cδ -1.601 -1.601 0.274 0.271 0.274 0.306

DGP: GAS-X, Estimate: GAS-X
αξ 0.032 -3.613 0.903 1.032 1.226 0.842
αδ 0.069 -2.685 0.160 0.163 0.164 0.167
βξ 0.977 3.802 0.372 0.556 0.642 0.625
βδ 0.977 3.802 0.268 0.280 0.284 0.285
ωξ 0.505 0.505 0.033 0.051 0.051 0.053
ωδ 0.990 0.990 0.091 0.101 0.102 0.102
cξ -4.236 -4.236 2.579 3.137 3.794 3.180
cδ -1.585 -1.585 0.391 0.403 0.422 0.407
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I Two additional empirical illustrations

This appendix reports empirical results for two additional asset classes: exchange rates and com-

modities. Specifically, we study daily GBP/USD log-returns, and daily Brent crude oil log-returns.

The exchange rate sample ranges from 5 January 1971 to 30 December 2022. The Brent oil sample

ranges from 20 May 1987 to 30 December 2022. We focus on the extreme left tail of each series.

Table I.1 presents the model’s deterministic parameter estimates. A numerical check reveals

that the deterministic parameters lie within the SE region implied by the sufficient conditions of

Theorems 1 and 2. The table does not include parameters cτ , cξ, and cδ since the model does not

include exogenous variables. Figure I.1 plots time-varying parameters, along with each series’ VaR

and ES over time. For both log-returns, we observe pronounced time variation in ξt and δt.
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Table I.1: Parameter estimates

Parameter estimates for the dynamic tail shape model. The second and third columns refer to two additional
illustrations: GBP/USD exchange rate log-returns, and Brent crude oil log-returns. The estimation samples
ranges from 5 January 1971 to 30 December 2022, and from 20 May 1987 to 30 December 2022, respectively.
Standard error estimates are in round brackets and are based on a sandwich covariance matrix estimator.
p-values are in square brackets.

Two additional illustrations
GBP/USD Brent oil

ωξ -2.019 -2.292
(0.10) (0.22)
[0.00] [0.00]

ωδ -1.184 0.070
(0.03) (0.03)
[0.00] [0.04]

aξ 0.008 0.148
(0.01) (0.03)
[0.37] [0.00]

aδ 0.086 0.148
(0.01) (0.01)
[0.00] [0.00]

bξ 0.998 0.997
(0.00) (0.00)
[0.00] [0.00]

bδ 0.992 0.985
(0.00) (0.00)
[0.00] [0.00]

λ 0 0
aτ 0.096 0.420
bτ 0.993 0.982

T 13,450 9,040
T ∗ 1,339 917

loglik -9,011.8 -36,881.3
AIC 18,035.7 73,774.6
BIC 18,080.7 73,817.3
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Figure I.1: Filtered tail parameters for GBP/USD and crude oil log-returns

Top panels: daily log-returns for the GBP/USD exchange rate (left) and Brent crude oil (right). Middle
and bottom panels: filtered tail shape (ξt, middle) and tail scale (δt, bottom) parameters. The thresholds
τt are reported at a 90% confidence level. Value-at-Risk (VaR) and Expected Shortfall (ES) are plotted at
an extreme 99% confidence level (top panels). The estimation samples range from 5 January 1971 to 30
December 2022 for the exchange rate, and from 20 May 1987 to 30 December 2022 for Brent crude oil.
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J Diagnostic checks for filter invertibility

Figures 4 and 5 in Section 4 plot filtered estimates of ξt and δt implied by maximum-likelihood

estimates θ̂ of the deterministic parameters reported in Table 2. Figure J.1 plots the time-varying

parameters for different initial values of f1. Both ξt and δt all converge to the same path, suggesting

that the bivariate filter is invertible at the empirical estimates θ̂.
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Figure J.1: Feasible invertibility conditions for the model

The plots show the filtered paths of tail index ξ̂t and tail shape δ̂t parameters when the factors are
initialized with different starting values. The panels on the left are results for ξt while the right side
panels are results for δt. The lines in the plots correspond to initiate the factors at f̂0 + c · σ(f̂), with

c = (−0.5,−0.4, · · · , 0, · · · ,+0.4,+0.5) and σ(f̂) is the standard deviations of the filtered factors.
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K Bootstrapping standard errors of deterministic pa-

rameters

Section 4.2 reports bootstrapped standard errors; compare also Boswijk et al. (2021). This section

explains how such standard error estimates can be obtained.

The bootstrap proceeds along the following steps. For completeness, the null hypothesis (H0)

states that observed covariate zt has no impact on the tail parameters ξt and δt. The alternative

hypothesis (H1) states that the covariate’s impact on the tail parameters is different from zero.

1. estimate the model for the dynamic thresholds τt, and save the “hit times” and the values

of xt.

2. estimate model under H1.

3. compute ξ̂t and δ̂t for all t.

4. compute PITs, ut = 1–(1 + ξtxt/δt)
−1/ξt , using the GPD cdf (2). Use the xt from step 0 for

this.

5. estimate model parameters under H0 to compute ξ̂t
0

and δ̂t
0
.

6. sample with replacement T values from ut to obtain u∗t for t = 1 · · ·T .

7. compute x∗t = invCDFGPD(u∗t ) = δ̂t
0
/ξ̂t

0 · [(1− u∗t )−ξ̂t
0

− 1].

8. with x∗t , t = 1, . . . , T , estimate model under H1.

9. repeat steps 6–8 many times, storing all estimates of a(.) and c(.). Then compute the standard

deviation of those estimates, and/or use them to compute t- and p-values directly.
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L VaR impact estimates for changes in bond yields

The deterministic parameter estimates presented in the final two columns of Table 2 are difficult to

interpret in economic (or probabilistic) terms when considered in isolation. This section addresses

the economic question how market risk measures, such as VaR, responded on average to a e1 bn

bond purchase intervention. To this end, we note that the sensitivity of VaRγ(yt) to bond purchases

zt−1 is given by

dVaRγ(yt)

dzt−1
=
∂VaR

∂τt

dτt
dzt−1

+
∂VaR

∂δt

dδt

df δt

df δt
dzt−1

+
∂VaR

∂ξt

dξt

df ξt

df ξt
dzt−1

(L.1)

=cτ +
VaRγ(yt)− τt

δt
δt c

δ −
VaRγ(yt)− τt + δt

(
1−γ
t∗/t

)−ξt
ln
(
1−γ
t∗/t

)
ξt

ξt c
ξ

=cτ + (VaRγ(yt)− τt) cδ −

(
VaRγ(yt)− τt + δt

(
1− γ
t∗/t

)−ξt
ln

(
1− γ
t∗/t

))
cξ,

where cτ is defined in (10) and cδ, cξ are given in (8) with C = (cδ, cξ)′. The expression is

intuitive: upper tail quantiles can change if bond purchases zt−1 affect the conditional quantile τt,

the conditional tail scale δt, or the conditional tail shape ξt. The total impact is obtained as the

weighted average

VaR impactγ = (1/
T∑
t

zt)
T∑
t

(dVaRγ(yt)/dzt−1) zt−1. (L.2)
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