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Appendix A1: estimation via importance sampling

An analytical expression for the the maximum likelihood (ML) estimate of parameter vector

ψ for the MiMe DFM is not available. A feasible approach to the ML estimation of ψ is the

maximization of the likelihood function that is evaluated via Monte Carlo methods such as

importance sampling. A short description of this approach is given below. A full treatment

is presented by Durbin and Koopman (2001, Part II).

The observation density function of y = (y′1, . . . , y
′
T )

′ can be expressed by the joint density

of y and f = (f ′
1, . . . , f

′
T )

′ where f is integrated out, that is

p(y;ψ) =

∫
p(y, f ;ψ)df =

∫
p(y|f ;ψ)p(f ;ψ)df, (A.1)

where p(y|f ;ψ) is the density of y conditional on f and p(f ;ψ) is the density of f . A Monte

Carlo estimator of p(y;ψ) can be obtained by

p̂(y;ψ) =M−1

M∑
k=1

p(y|f (k);ψ), f (k) ∼ p(f ;ψ),

for some large integer M . The estimator p̂(y;ψ) is however numerically inefficient since

most draws f (k) will not contribute substantially to p(y|f ;ψ) for any ψ and k = 1, . . . , K.

Importance sampling improves the Monte Carlo estimation of p(y;ψ) by sampling f from

the Gaussian importance density g(f |y;ψ). We can express the observation density function

p(y;ψ) by

p(y;ψ) =

∫
p(y, f ;ψ)

g(f |y;ψ)
g(f |y;ψ)df = g(y;ψ)

∫
p(y|f ;ψ)
g(y|f ;ψ)

g(f |y;ψ)df. (A.2)

Since f is from a Gaussian density, we have g(f ;ψ) = p(f ;ψ) and g(y;ψ) = g(y, f ;ψ) / g(f |y;ψ).

In case g(f |y;ψ) is close to p(f |y;ψ) and in case simulation from g(f |y;ψ) is feasible, the

Monte Carlo estimator of the likelihood function is given by

p̃(y;ψ) = g(y;ψ)M−1

M∑
k=1

p(y|f (k);ψ)

g(y|f (k);ψ)
, f (k) ∼ g(f |y;ψ), (A.3)
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is numerically much more efficient, see Kloek and van Dijk (1978), Geweke (1989) and Durbin

and Koopman (2001).

The importance density g(f |y;ψ) is based on an approximating, linear Gaussian state

space model based on an observation equation for each yjt in (1) and given by

yjt = cjt + θjt + εjt, εjt ∼ N(0, hjt), (A.4)

where cjt is a known mean, θjt is the unobserved signal and hjt is a known variance, for

j = 1, . . . , J + N . For the normal variables yjt, the signal θjt is equal to µjt of (5) and

the variables cjt = 0 and hjt = σ2
j are known with j = J + 1, . . . , J + N . For the default

counts yjt in the approximating model, we let the signal θjt be equal to π∗
jt of (4), with

j = 1, . . . , J . The variables cjt and hjt for the default counts are determined such that

the modes of p(f |y;ψ) and g(f |y;ψ) are equal, see Shephard and Pitt (1997), Durbin and

Koopman (1997), and Durbin and Koopman (p. 191–195, 2001) for the details. The values

for cjt and hjt are found iteratively and by means of the Kalman filter and an associated

smoothing method.

To simulate values from the resulting importance density g(f |y;ψ) based on the approx-

imating model (A.4), the simulation smoothing method of Durbin and Koopman (2002) can

be used. For a set of M draws f (1), . . . , f (M) from g(f |y;ψ), the evaluation of the likelihood

function (A.3) via importance sampling relies on the computation of p(y|f ;ψ), g(y|f ;ψ),

with f = f (k), and g(y;ψ) for k = 1, . . . ,M . Density p(y|f ;ψ) is based on the model spec-

ifications in (3). Density g(y|f ;ψ) is based on the approximating, linear Gaussian model

(A.4). Density g(y;ψ) is effectively the likelihood function of the approximating model (A.4)

and can be computed via the Kalman filter, see Durbin and Koopman (2001). Testing the

assumptions underlying the application of importance sampling can be carried out using the

procedures proposed by e.g. Koopman, Shephard, and Creal (2009).
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Appendix A2: estimation of latent factors

Inference on the latent factors can also be based on importance sampling. In particular, it

can be shown that

E(f |y;ψ) =
∫
f · p(f |y;ψ)df =

∫
f · w(y, f ;ψ)g(f |y;ψ)df∫
w(y, f ;ψ)g(f |y;ψ)df

,

where w(y, f ;ψ) = p(y|f ;ψ)/g(y|f ;ψ). The estimation of E(f |y;ψ) via importance sampling

can be achieved by

f̃ =
M∑
k=1

wk · f (k)

/
M∑
k=1

wk,

with wk = p(y|f (k);ψ)/g(y|f (k);ψ) and where f (k) ∼ g(f |y;ψ) is obtained by simulation

smoothing. The standard error of f̃i, the ith element of f̃ , is denoted by si and is computed

by

s2i =

(
M∑
k=1

wk · (f (k)
i )2

/
M∑
k=1

wk

)
− f̃ 2

i ,

where f
(k)
i is the ith element of f (k).

Appendix A3: macro data listing and time series plots

Table 1 and Figure 1 contain a listing and time series plots, respectively, of the macro data

that is used for the empirical part of our analysis.

Appendix A4: information criteria

Table 2 reports likelihood-based information criteria. The standard AIC and BIC refer to the

whole model which includes the default and macro data parts. The Bai and Ng (2002) panel

criteria refer to the fit of macro factors fm
t to the macro data yjt for j = J + 1, . . . , J +N .
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Table 1: Macroeconomic Time Series Data
The table gives a full listing of included macroeconomic time series data xt and binary indicators bt. All
time series are obtained from the St. Louis Fed online database, http://research.stlouisfed.org/fred2/.

Category Summary of time series in category Shortname Total no

(a) Macro indicators, and

business cycle conditions

Industrial production index

Disposable personal income

ISM Manufacturing index

Uni Michigan consumer sentiment

New housing permits

indpro

dspi

napm

umich

permit

5

(b) Labour market

conditions

Civilian unemployment rate

Median duration of unemployment

Average weekly hours index

Total non-farm payrolls

unrate

uempmed

AWHI

payems

4

(c) Monetary policy

and financing conditions

Government bond term structure spread

Federal funds rate

Moody’s seasoned Baa corporate bond yield

Mortgage rates, 30 year

10 year treasury rate, constant maturity

Credit spread corporates over treasuries

gs10

fedfunds

baa

mortg

tssprd

credtsprd

6

(d) Bank lending Total Consumer Credit Outstanding

Total Real Estate Loans, all banks

totalsl

realln 2

(e) Cost of resources PPI Fuels and related Energy

PPI Finished Goods

Trade-weighted U.S. dollar exchange rate

ppieng

ppifgs

twexbmth
3

(f) Stock market returns S&P 500 yearly returns

S&P 500 return volatility

s p500

vola 2

22
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Table 2: Information criteria
We report likelihood-based information criteria (IC) to guide our model selection. The estimation sample is

from 1971Q1 to 2009Q1. Row minimum values are printed in bold.

F1 F2 F3 F4
loglik -6530.2 -6277.3 -6182.5 -6133.7
#par 37 64 91 118

AIC 13134.5 12683.2 12548.2 12505.4
BIC 13415.0 13168.1 13237.2 13398.4

Bai Ng IC1 -0.246 -0.454 -0.523 -0.474
Bai Ng IC2 -0.239 -0.440 -0.502 -0.446
Bai Ng IC3 -0.259 -0.481 -0.563 -0.527

Appendix A5: macroeconomic risk factor estimates

The top panel of Figure 2 presents the estimated risk factors fm
t as defined in (4) and (5).

We plot the estimated conditional mean of the factors, along with approximate standard

error bands at a 95% confidence level. The factors are ordered row-wise from top-left to

bottom-right according to their share of explained variation for the macro and financial

data.

The bottom panel of Figure 2 presents the shares of variation in each macroeconomic

time series that can be attributed to the common macroeconomic factors. The first two

macroeconomic factors load mostly on labor market, production, and interest rate data.

The last two factors displayed in the top panel of Figure 2 load mostly on survey sentiment

data and changes in price level indicators. The macroeconomic factors capture 27.2%, 21.3%,

11.7%, and 8.3% of the total variation in the macro data panel, respectively (68.6% in total).

The estimated factor loadings reveal that all four common factors fm
t tend to load more on

default probabilities of firms rated investment grade rather than speculative grade.
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Figure 2: Macroeconomic risk factor estimates
The four panels present the estimated risk factors fm

t as defined in (4) and (5). We present the estimated
conditional mean of the factors, along with approximate standard error bands at a 95% confidence level.
Details on the estimation and signal extraction methodology are available in A1 of this web appendix. Factors
fm are common to the (continuous) macro and financial as well as the (discrete) default count data.
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Appendix A6: macro principal components

Figure 4 plots the first four principal components from our macro data. Missing values are

set to zero after standardization. The principal components change little when SLO bank

lending standards are added to the panel as an additional explanatory variable.

Figure 4: Principal components of macro data
We plot the first four principal components from the macro data listed in Table 1. We also plot the principal
components for the case when bank lending standards are added to the panel.
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Appendix A7: graphs to illustrate model fit

Figure 5 presents the model-implied economy-wide default rate against the aggregate ob-

served rates. We distinguish four specifications with (a) no factors, (b) fm
t only, (c) fm

t , f
d
t ,

and (d) all factors fm
t , f

d
t , f

i
t . Based on these specifications, we assess the goodness of fit

achieved at the aggregate level when adding latent factors. The static model fails to capture

the observed default clustering around recession periods. The changes in the default rate

for the static model are due to changes in the composition and quality of the rated universe.

Such changes are captured by the rating and industry specific intercepts in the model. The

upper-right panel indicates that the inclusion of macro variables helps to explain default

rate variation. The latent frailty dynamics given by fd
t , however, are clearly required for a

good model fit. This holds both in low default periods such as 2002-2007, as well as in high

default periods such as 1991. The bottom graphs of Figure 5 indicate that industry-specific

developments cancel out in the cross-section to some extent and can thus be diversified. As

a result, they may matter less from a (fully diversified) portfolio perspective.
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Figure 5: Model fit to observed aggregate default rate
Each panel plots the observed quarterly default rate for all rated firms against the default rate implied by
different model specifications. The models feature either (a) no factors, (b) only macro factors fm, (c) macro
factors and a frailty component fm, fd, and (d) all factors fm, fd, f i, respectively.
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Appendix A8: prediction error diagnostics

We report residual diagnostics for one step ahead prediction errors that pertain to the default

count panel data. We define a time series of prediction errors as

r̂t|t−1 =

(
J∑

j=1

δjt

)−1 J∑
j=1

δjt
(
yjt − π̂jt|t−1kjt

)
, (A.5)

where yjt are the quarterly default counts, kjt are the respective number of firms at risk at

the beginning of quarter t, j = 1, . . . , J , the indicator function δjt is equal to one if kjt > 0

and zero otherwise, and π̂jt|t−1 is the one step ahead predicted pd for firms in cross section j.

For prediction, parameter estimates are kept at full sample values for computational reasons,

while risk factor estimates are obtained from an expanding window that contains data up to

and including t− 1.

Figure 6 reports (a) mean prediction errors r̂t|t−1 over time, (b) squared prediction errors

r̂2t|t−1, (c) a QQ plot of the prediction errors against the normal, (d) an error histogram

and associated density kernel estimate, as well as (e) the autocorrelation function (ACF)

pertaining to errors and squared errors, respectively. Overall, the errors are zero on aver-

age and roughly standard normally distributed. Some larger deviations of observed from

predicted values occur in the recession periods of 1991 and 2008-09. We note some leftover

autocorrelation at the fourth lag in the error ACF. Overall, however, error autocorrelation

does not seem to be a major issue. The autocorrelation at the fourth lag, along with some

larger residuals in 1991 and 2008-09, both disappear if we base our diagnostics on deviations

implied by smoothed (full sample) risk factor estimates.
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Figure 6: Residual diagnostics
We report (a) prediction errors r̂t|t−1 over time, (b) squared prediction errors r̂2t|t−1, (c) a QQ plot of the

prediction errors against the normal, (d) an error histogram and associated density kernel estimate, (e) an

estimate of the prediction error autocorrelation function, and (f) the autocorrelation function for squared

errors.
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Appendix A9: frailty effects and macro data

Figure 7 compares three different estimates of the frailty factor fd
t . The estimates are based

on the same econometric specification but take in different macro data: (i) the original panel

data as described in the paper, (ii) the original data stacked with its six months lagged

values, doubling its cross sectional dimension, and (iii) macro data that replaces annual

with quarterly growth rates. The frailty factor estimate is fairly robust to such changes

and leading/lagging the macro data. This suggests that frailty is not caused by such timing

effects. The reason why timing is not very important may be that such timing effects are

captured indirectly in a static factor structure, see Stock and Watson (2002). In a linear

Gaussian factor model, the static factors can be interpreted as a rotated version of current

and lagged structural factors.
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Figure 7: Frailty factor estimates for different macro data panels
We plot three conditional mean estimates of the frailty factor based on our favorite specification. Each

model, however, now takes in a different transformation of the macro data: the original macro panel (22

covariates), the original panel stacked with its six months lagged values (44 covariates), and the original

panel that replaces annual growth rates with quarterly rates.
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Appendix A10: (un)conditional loss distributions

Section 4 considers a portfolio of short-term (rolling) loans to all Moody’s rated U.S. firms.

Loans are extended at the beginning of each quarter during 1981Q1 and 2008Q4 at no

interest. A non-defaulting loan is re-extended after three months. The loan exposure to

each firm at time t is given by the inverse of the total number of firms at that time, that

is (
∑

j kjt)
−1. This implies that the total credit portfolio value is 1$ at all times. For

simplicity, we assume a stressed loss-given-default of 80%. This example portfolio is stylized

in many regards. Nevertheless, it allows us to investigate the importance of macroeconomic,

frailty, and industry-specific dynamics for the risk measurement of a diversified loan or bond

portfolio.

It is straightforward to simulate the portfolio credit loss distribution and associated risk

measures for arbitrary credit portfolios in such a setting. First, the exposures kjt are chosen

to correspond to the portfolio exposures. Second, one uses the estimation methods detailed

in this appendix to estimate the current position of the latent systematic risk factors. Third,

one can use the transition equation (2) directly to simulate future risk factor realizations.

Finally, conditional on the risk factor path, the defaults can be simulated by combining (3)

and (4). Term structures of default rates can easily be obtained by combining model-implied

quarterly probabilities over time.
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