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1 Introduction

The presence of a factor structure underlying the conditional means of many interesting

macroeconomic and financial panel data sets has by now been firmly established; see, for

example, Stock and Watson (2002), Bai and Ng (2002), Bai and Li (2012), Ahn and Horen-

stein (2013), and Stock and Watson (2016). Moreover, recent studies have further suggested

a factor structure for the volatilities of such panels; see, for example, Jurado et al. (2015),

Barigozzi and Hallin (2016), Barigozzi and Hallin (2017) and Gorodnichenko and Ng (2017).

Given this evidence, it is natural to inquire about the interaction between such mean (lo-

cation) and volatility (scale) factors. Specifically, in macroeconomic time series panels of

widespread interest, do shocks to the location factors also drive the common scale factors?

Or vice versa? Are factor interactions contemporaneous, or more pronounced at a lag? To

what extent is joint inference sharpened when both location and scale factors are inferred

simultaneously? Are factor interactions empirically relevant according to e.g. likelihood ratio

tests? Do they improve point and density forecasts? Unfortunately, and despite its theoreti-

cal appeal and obvious practical relevance, a comprehensive statistical framework to address

such first-order questions in macroeconomics and finance is currently missing.

This paper introduces a novel nonlinear and non-Gaussian dynamic factor model in state

space form. In this model, the location and scale factors can interact freely within an

unrestricted vector autoregression, subject only to identification restrictions. We propose an

estimation method for the model’s deterministic parameters, along with approximate filtering

and smoothing recursions that enable joint inference on all latent factors. The approximate

filter is straightforward to implement, involving the augmentation of the Kalman filter with

weighted least squares regressions. Additionally, it conveniently yields the approximate

marginal likelihood as a by-product.

To our knowledge, we are the first to present a comprehensive, tractable, non-simulation-

based methodology for the statistical analysis of nonlinear non-Gaussian dynamic factor

models with interacting factor structures. We focus on modeling data with a low-to-moderate
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cross-sectional dimension N . In other aspects, the statistical model is a natural generaliza-

tion of the dynamic factor model for the conditional mean; see e.g. Stock and Watson (2016)

for a review.

In our proposed model, the observed data follow a Student’s t density, parameterized by

two signals: one representing the location and the other the (log-)scale. Deviating from the

linear Gaussian assumption is crucial for analyzing macroeconomic and financial time series

panels, where heavy tails and volatility clustering are prevalent characteristics. Within our

framework, both the location and scale signals exhibit factor structures, which can now be

interdependent. Notably, our approach captures the empirical regularity that macroeconomic

time series’ locations and scales often move in tandem, exhibiting either cyclical or counter-

cyclical behavior; see e.g. Jurado et al. (2015), Adrian et al. (2019), Caldara et al. (2021),

and Adrian et al. (2022).

While the concept of a state space model with interacting location and scale factors is

intuitively appealing, its statistical analysis necessitates the development of novel method-

ology. Unfortunately, existing methods are not readily applicable for this purpose. Tradi-

tional estimation techniques for factor models, such as principal components analysis (PCA)

and maximum likelihood methods based on the Kalman filter, would require substantial

adjustments owing to the model’s non-Gaussian nature and the non-linear entry of both

location and scale factors into the model; see e.g. Durbin and Koopman (2012). Moreover,

the contemporaneous dependence between location and scale factors renders standard Gibbs

sampling routines inadmissible, as observed in previous work by Chib et al. (2006) and Kast-

ner et al. (2017). Simulation-based approaches, including particle filtering, Markov Chain

Monte Carlo, and Importance Sampling, also present significant challenges: they are not

straightforward to implement, can be computationally expensive, and may ultimately still

fall short of providing convincing results in practice.

In our approximate filtering and smoothing algorithms, we sequentially replace the infea-

sible true conditional density with an approximate density from the Gaussian family. The
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mean and variance of this approximating density are optimally chosen to minimize the di-

vergence between the target and the approximating density. Our criterion for optimal fit can

be seen as an online adaptation of the efficient importance sampling criterion discussed in

Richard and Zhang (2007) and Koopman et al. (2014). The resulting “minimum variance”

approximating densities can be computed using numerical integration methods, which can

be implemented through weighted least squares regressions. As a valuable by-product, the

filtering algorithm provides an accurate approximation for the marginal likelihood. This, in

turn, offers a straightforward way to obtain quasi-maximum likelihood (QML) estimates for

the model’s deterministic parameters.

Our approach draws inspiration from a recent surge in approximate inference methods.

Notable examples include Variational Inference (as discussed e.g. by Bishop (2006) and

Blei et al. (2017)), Expectation Propagation (explored by Minka (2001)), the Integrated

Nested Laplace Approach (as presented by Rue et al. (2009)), and Approximate Bayesian

Computation methods (studied by Marin et al. (2012)). Our approximate filter retains the

key advantages of these approximate inference techniques: First, the method is relatively

straightforward to implement, requiring an augmentation of standard Kalman filter-type re-

cursions with weighted least squares regressions. Second, by avoiding the need for sampling,

our algorithm outperforms traditional Markov Chain Monte Carlo approaches in terms of

speed. This efficiency makes it well-suited for complex models such as the nonlinear and non-

Gaussian model under consideration. Finally, our approach remains flexible. For instance,

different observation densities (including non-differentiable ones) could in principle be ac-

commodated with minor adjustments. The main distinctions between our approach and the

aforementioned methods lie in the sequential determination of the approximate posterior,

the use of a distinct divergence measure leading to computationally tractable optimization

problems, and our estimation of deterministic model parameters via quasi-maximum like-

lihood. In contrast, the cited approaches typically operate within a Bayesian framework

where all parameters are treated as latent states.
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We evaluate our parameter estimation and signal extraction method in a comprehensive

simulation study. This study is centered around four fundamental questions: Can our method

effectively differentiate between lagged and contemporaneous factor dependencies in finite

samples of realistic size? Does our approach inadvertently identify factor interactions that do

not truly exist? Can our methodology yield more precise estimates for all factors compared

to simpler, non-parametric alternatives, such as two-stage PCA? Finally, is our method

susceptible to approximation errors that accumulate over time? Our findings suggest that

the answers to the first and third questions are affirmative and otherwise negative.

To demonstrate the utility of our approach for structural analysis and forecasting, we

examine end-of-quarter real GDP growth rates for the Group of Seven (G7) countries: the

United States, Japan, Germany, Great Britain, France, Italy, and Canada. The dataset

ranges from 1961Q3 to 2022Q4, resulting in N = 7 countries and T = 246 observations. In

our model, we select two location factors and one scale factor to fit these data. The factor

loadings are restricted such that the two location factors can be interpreted economically:

one represents a global level factor, while the other captures an additional European group

factor.

The model’s parameter estimates reveal statistically (and economically) significant factor

interactions, both contemporaneously and at a lag. Non-zero factor interactions are further

supported by likelihood ratio tests and impulse response function estimates. The scale

factor is counter-cyclical, increasing macroeconomic uncertainty at the onset of and during

a recession (Jurado et al., 2015) and making the bottom quantiles much more volatile than

the upper quantiles (Adrian et al., 2019, Adrian et al., 2022). Suppressing factor interactions

also has costs in terms of out-of-sample forecasting performance, leading to reduced accuracy

in point and density forecasts up to two years ahead. Diagnostic checks confirm a generally

tight fit between the intractable target densities and the approximating Gaussian densities.

Our empirical data are moderately fat-tailed; this is intuitive since the Covid-19 pandemic

recession is part of the estimation sample.
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We proceed as follows. Section 2 introduces our nonlinear dynamic factor model, and

presents our estimation methodology for its latent factors and deterministic parameters.

Section 3 discusses simulation results. Section 4 provides an empirical illustration. Section

5 concludes. A web appendix provides further technical and empirical results.

2 Statistical model

2.1 The dynamic factor model in state space form

We introduce our nonlinear non-Gaussian dynamic factor model with interacting location and

scale factors for the N × 1 observation vectors yt = (y1t, . . . , yNt)
′, where index i = 1, . . . , N

indicates a cross-sectional unit, and t = 1, . . . , T denotes time. We have in mind a finite and

low-dimensional N , such as, say, N ≤ 15. Two sets of common factors are important in the

development below: (i) the r × 1 vector of location factors ft = (f1t, . . . , frt)
′ and (ii) the

q × 1 vector of scale factors ht = (h1t, . . . , hqt)
′. We collect these two sets of factors in the

(r + q)× 1 state vector αt = (f ′
t , h

′
t)

′.

The factor model’s observation (measurement) “equation” for yit is then given by

yit|αt
i.d.∼ p(yit|µit, σ

2
it, ν), (1)

µit = ci + λ′
ift, σ2

it = exp(l′iht),

where i.d. stands for independently distributed across i and t, and p(yit|µit, σ
2
it, ν) denotes

the observation density with location µit and scale σ2
it. The inclusion of ν in the observation

density allows it to depend on additional parameters, such as a degrees-of-freedom parameter.

The common factors ft influence the location parameters µit via the r × 1 loading vectors

λi. Similarly, the common factors ht influence the log-scales lnσ
2
it through the q× 1 loading

vectors li.

Important examples for the observation density p(yit|µit, σ
2
it, ν) include symmetric den-
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sities such as the normal density yit|αt
i.d.∼ N (µit, σ

2
it) and the Student’s t density with ν

degrees of freedom yit|αt
i.d.∼ t(µit, σ

2
it, ν). In principle, skewed densities could also be con-

sidered within our framework. Skewness, however, is more instructively modeled in our

setting via a contemporaneous and/or lagged dependence between the location and scale

factors. For example, a negative (positive) dependence between ft and ht will cause multi-

step ahead forecasts of the data to be negatively (positively) skewed. We consider non-zero

factor interactions for simulated data in Section 3, and for actual data in Section 4.

The common location and scale factors are stacked in the state vector αt and are jointly

modeled as a first-order VAR. The state (transition) equation is given by

αt = (f ′
t , h

′
t)

′ = d+Φαt−1 + ηt, ηt
i.d.∼ N (0,Σ), (2)

with (r + q) × 1 conditional mean d, an (r + q) × (r + q) autoregressive coefficient matrix

Φ, and an (r + q) × 1 vector of Gaussian shocks ηt from the multivariate normal density

N (0,Σ) with mean zero and positive-definite variance matrix Σ. The first-order VAR in

(2) is without loss of generality, as higher-order VAR processes can be cast into companion

form. For convenience, we collect all unknown deterministic parameters in the vector θ.

The key novelty of model (1) – (2) lies in the joint and unrestricted treatment of its

interdependent factors. An independent volatility model, as in e.g. Koopman and Bos (2004),

is obtained when restricting Φ and Σ to be block diagonal, see also Kastner et al. (2017)

and references therein. By contrast, no a-priori restrictions are placed on the dynamic

interaction between the location and scale factors in our framework. The scale of the data is

thus fully endogenous, and likelihood ratio hypothesis tests can be conducted to assess the

appropriateness of the exogenous volatility assumption.

As usual, the state vector αt needs to be initialized. If the VAR in (2) is stationary, then

the state vector’s stationary distribution can be used, such that

α1 ∼ N
(
δ, (Ir+q −ΦΦ′)−1Σ

)
, (3)
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where δ = (Ir+q −Φ)−1 d. Of course, other initial conditions not depending on system

matrices δ, Φ, and Σ can also be adopted, depending on the application and data at hand.

2.2 Identification restrictions

Without further restrictions the deterministic parameters θ are not identified. Several strate-

gies to identify dynamic factor models exist, and in many cases the identifying restrictions

can be formulated such that the latent factors have an economic interpretation; see e.g. Bai

and Li (2012) and Stock and Watson (2016). In Section 4 below, we restrict at least r2

elements of the location factor loadings Λ = (λ1, . . . , λN)
′, and at least q2 elements of the

scale factor loadings L = (l1, . . . , lN)
′ to ensure statistical identification. In addition, we set

c = (c1, . . . , cN)
′ to the unconditional means of the data, and restrict the first r elements

of δ to zero. Over-identifying restrictions can be imposed to help enhance the economic

interpretability of the factors, and/or to facilitate the numerical estimation of the remaining

unrestricted deterministic parameters.

2.3 Approximate filtering recursions

The estimation of the statistical model (1) –(3)’s latent factors and deterministic parameters

is non-trivial because the model is non-Gaussian and both location and scale factors enter

the model in a nonlinear way. This implies that standard filtering and smoothing methods

based on the Kalman filter cannot be used. To see this immediately, note that the conditional

mean of αt is, by definition,

Ep(αt|Yt; θ) =

∫
αt

αtp(αt|Yt; θ)dαt, (4)

where Yt = {y1, . . . , yt}. To obtain conditional mean estimates, we therefore need to know

the conditional density p(αt|Yt; θ). Unfortunately, this density is not available owing to the

nonlinear features of the model. The same issue holds when we consider other conditional
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mean functions, such as Ep(g(αt)|Yt; θ) for some function g(·); such estimates also require

knowing the conditional density p(αt|Yt; θ).

Our approximation method is based on replacing the conditional density p(αt|Yt; θ) by

an approximating conditional density, p̂(αt|Yt; θ). This approximating density needs to be

computationally convenient – in the sense that the integral in (4) can be solved quickly and

reliably. In addition, the approximating density should be as close as possible to the true

conditional density.

We derive the approximate filtering algorithm as follows. Let p(αt|Yt; θ) and p(αt+1|Yt; θ)

denote the filtered and predictive conditional densities, and let p̂(αt|Yt; θ) and p̂(αt+1|Yt; θ)

denote their approximating counterparts. The approximating densities are chosen to belong

to the Gaussian family, such that

p̂(αt|Yt; θ) ≡ N (ât|t, V̂t|t) and p̂(αt+1|Yt; θ) ≡ N (ât+1|t, V̂t+1|t),

where ât+s|t = E(αt+s|Yt; θ) and V̂t+s|t = Var(αt+s|Yt; θ) for s = 0, 1. The goal is to compute

ât+s|t and V̂t+s|t recursively, for t = 1, . . . , T , such that they are close to the true conditional

means and variances.

We first discuss the computation of p̂(αt+1|Yt; θ) given that p̂(αt|Yt; θ) is available. Since

the distribution of the common factors αt is Gaussian, we take p̂(αt+1|αt) = p(αt+1|αt) and

note that p(αt+1|αt) ≡ N ((Ir+q−Φ)δ+Φαt−1,Σ). The corresponding predictive distribution

conditional on the data is

p̂(αt+1|Yt; θ) =

∫
αt

p̂(αt+1|αt)p̂(αt|Yt; θ)dαt = N
(
d+Φât|t,ΦV̂t|tΦ

′ +Σ
)
,

which follows directly from the properties of the Gaussian distribution.

Next, we consider constructing p̂(αt|Yt; θ) given that p̂(αt|Yt−1; θ) is known. From Bayes

rule we know that p(αt|Yt; θ) ∝ p(yt|αt; θ)p(αt|Yt−1; θ). As a result, once p(αt|Yt−1; θ) has

been approximated, we only need to find a good approximation for p(yt|αt; θ) to approximate
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p(αt|Yt; θ).

We consider the following Gaussian density approximation for the observation density

p̂(yt|αt; θ) =
n∏

i=1

p̂(yit|zit; θ), p̂(yit|zit; θ) = exp

(
ωit + b′itzit −

1

2
z′itCitzit

)
, (5)

where zit = (µit, lnσ
2
it)

′, and the 2×1 vector bit and the 2×2 matrix Cit are chosen to ensure

that p̂(yt|αt; θ) and p(yt|αt; θ) are close. The term ωit =
(
ln |Cit| − ln 2π − b′itC

−1
it bit

)
/2 is

chosen such that the density always integrates to one.

The coefficients bit and Cit are obtained from the minimization problem

arg min
b̃it,C̃it

∫
zit

[ln (p(yit|zit; θ)/p̂(yit|zit; θ))]2 p̂(zit|Yt; θ)dzit. (6)

Since ln p̂(yit|zl,kit ; θ) is a linear function of the coefficients in bit and Cit, the complicated-

looking minimization problem (6) boils down to running a standard (weighted) least squares

regression. We discuss the precise regression specification in Section 2.7 when discussing

diagnostic checks of approximation quality.

The criterion function in (6) can be interpreted in at least two ways. First, it chooses the

coefficients bit andCit such that the variance of the scalar random variable ln p(yit|zit; θ)/p̂(yit|zit; θ)

is minimized. (The variance is considered with respect to the approximating density p̂(zit|Yt; θ).)

Second, (6) can be seen as an online version of the efficient importance sampling criterion

function considered in the importance sampling literature. There, this criterion function is

used to select an accurate importance density, see e.g. Richard and Zhang (2007), Koopman

et al. (2014), and Koopman et al. (2017).

The optimal coefficients bit = (bit,1, bit,2) and Cit = [cit,11, cit,12; cit,21, cit,22] are stacked

into the 2n× 1 vector bt = (b1t,1, . . . , bnt,1, b1t,2, . . . , bnt,2)
′, and the 2n× 2n coefficient matrix

Ct =

 Ct,11 Ct,12

Ct,21 Ct,22

 , where Ct,lk = diag(c1t,lk, . . . , cnt,lk),
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for l, k = 1, 2. We note that Ct is sparse, containing 4N ≤ 4N2 non-zero elements. It is

reasonably fast to invert as a result.

Since ln p(yit|zit; θ) is nonlinear in zit, the integral in (6) cannot be solved analytically.

However, this integral is of low dimension (two). This low dimension makes it attractive

to use numerical integration methods to evaluate the integral. We follow the exposition in

Monahan (2001) and use Gaussian-quadrature for the evaluation of the integral; see also

Koopman et al. (2014) and Koopman et al. (2017).

To briefly sketch the numerical integration procedure, we consider a set of abscissa {vl}Ll=1

with associated Gauss-Hermite weights h(vl) for l = 1, . . . , L. Typical values of L are 10,

20, or 30. The numerical implementation of the minimization problem (6) is given by

{b̂it, Ĉit} = arg min
b̃it,C̃it

L∑
l,k=1

wl,k

[
ln
(
p(yit|zl,kit ; θ)/p̂(yit|z

l,k
it ; θ)

)]2
(7)

where wl,k = h(vl)h(vk) exp(
1
2
v2l ) exp(

1
2
v2k), zl,kit = Riât|t + (RiV̂t|tR

′
i)
1/2vl,k, and vl,k =

(vl, vk)
′. Ri = diag(λ′

i, l
′
i) is a 2 × (r + q) combined loading matrix, where diag(·, ·) de-

notes the diagonal concatenation of two matrices.

After solving the minimization problem (7), the estimated coefficients b̂it and Ĉit replace

bit and Cit in (5). Now p̂(yt|αt; θ) is completely known, and together with p̂(αt|Yt−1; θ) we

can compute p̂(αt|Yt; θ). Since both p̂(yt|αt; θ) and p̂(αt|Yt−1; θ) are Gaussian, also p̂(αt|Yt; θ)

is Gaussian and known in closed form. This completes the construction of the approximating

conditional filtering density. The following algorithm summarizes the approximate filter.

Algorithm 1: Approximate Filter

1. Initialize: For example, set t = 1, â1|0 = δ and V̂1|0 = (Ik −ΦΦ′)−1Σ.

2. Filter: set b̂it = 0 and Ĉ−1
it = I2 for i = 1, . . . , n and iterate between (a) and (b) until

convergence.
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(a) Update:

ât|t = ât|t−1 + V̂t|t−1R
′(RV̂t|t−1R

′ + Ĉ−1
t )−1(Ĉ−1

t b̂t −Rât|t−1)

V̂t|t = V̂t|t−1 − V̂t|t−1R
′(RV̂t|t−1R

′ + Ĉ−1
t )−1RV̂t|t−1

where R = diag(Λ,L), with Λ = (λ1, . . . , λn)
′ and L = (l1, . . . , ln)

′.

(b) Approximate: obtain b̂it and Ĉ−1
it by solving the approximation problem (7) for

i = 1, . . . , N

3. Predict:

ât+1|t = d+Φât|t

V̂t+1|t = ΦV̂t|tΦ
′ +Σ

4. Increase t = t+ 1 and go to step (ii)

Two issues deserve comment. First, the approximate filter’s updating step (ii) needs

to iterate between obtaining ât|t and V̂t|t and solving for {b̂it, Ĉit}. This is because the

minimization problem (7) depends on ât|t and V̂t|t, not ât|t−1 and V̂t|t−1. Typically, only a

few iterations (less than five) are sufficient.

Second, upon closer inspection, the recursions above look similar to the standard Kalman

filter recursions as presented in e.g. Durbin and Koopman (2012, Chapter 4). The impor-

tant difference lies in the filtering step (ii), where the non-Gaussian observation density

is approximated by the closest density in the Gaussian class, and the filtering is based on

this approximating density. Specifically, y∗it = C−1
it bit plays the role of a bivariate pseudo-

observation for the scalar observation yit, Ĉ
−1
t b̂t − Rât|t−1 is a [2N × 1] prediction error,

with one-step-ahead prediction error variance RV̂t|t−1R
′ + Ĉ−1

t . Matrix C−1
t plays the role

of a measurement error variance, and the expression V̂t|t−1R
′(RV̂t|t−1R

′ + Ĉ−1
t )−1 is the

approximate filter’s Kalman gain matrix.
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2.4 Approximate smoothing recursions

Let ât|T = Ep̂(αt|YT ; θ) and V̂t|T = Varp̂(αt|YT ; θ). These full-sample quantities can be

computed by the backward recursions based on the output of the approximate filter. The

following algorithm summarizes the approximate smoother for model (1) – (3).

Algorithm 2: Smoothing recursions

1. Initialize; set t = T , N̂T = 0 and r̂T = 0

2. Smooth:

rt−1 = R′(RV̂t|t−1R
′ + Ĉ−1

t )−1(Ĉ−1
t b̂t −Rât|t−1) + L′

trt

Nt−1 = R′(RV̂t|t−1R
′ + Ĉ−1

t )−1R+ L′
tNtLt

ât|T = ât|t−1 + V̂t|t−1rt−1

V̂t|T = V̂t|t−1 − V̂t|t−1Nt−1V̂t|t−1

where R = diag(Λ,L), with Λ = (λ1, . . . , λn)
′ and Lt = Φ − V̂t|t−1R

′(RV̂t|t−1R
′ +

Ĉ−1
t )−1R.

3. Decrease t = t− 1 and go to step (ii).

The derivation follows along the lines of Durbin and Koopman (2012, Chapter 4). We again

note a close correspondence between the standard Kalman Smoother and the backward

smoothing recursions presented in Algorithm 2.

2.5 ML estimation of the deterministic parameters

The approximate filter provides a convenient prediction error decomposition from which an

approximate marginal likelihood can be constructed. We use this marginal likelihood to

obtain quasi-maximum likelihood estimates of the deterministic parameters θ. This is a

common estimation approach for dynamic factor models when the levels of the variables are
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driven by common factors, see, for example, Doz et al. (2012), Bai and Li (2012), Jungbacker

and Koopman (2014), Banbura and Modugno (2014) and Bai and Li (2016).

We start by considering the following decomposition of the marginal likelihood

p(y; θ) =
T∏
t=1

n∏
i=1

p(yit|Yt−1; θ)

=
T∏
t=1

n∏
i=1

∫
zit

p(yit|zit; θ)p(zit|Yt−1; θ) dzit, (8)

where again p(yit|zit; θ) is nonlinear and p(zit|Yt−1; θ) is not known in closed form. We pro-

ceed as with the approximate filter, replacing p(zit|Yt−1; θ) by its approximated counterpart

p̂(zit|Yt−1; θ). In addition, the integral in (8) is again low-dimensional (two). This means we

can use numerical integration techniques to obtain an accurate estimate. We consider

p̂(y; θ) =
T∏
t=1

n∏
i=1

L∑
l=1

L∑
k=1

wl,kp(yit|zl,kit ; θ) (9)

with zl,kit and vl,k = (vl, vk)
′ as defined below (7). The marginal (log-)likelihood is optimized

with respect to the deterministic parameters using numerical optimization methods, such as

fminunc (in Matlab) or maxBFGS (in OxMetrics). The marginal likelihood approximation

(9) takes into account the non-linearity in the observation density by considering p(yit|zl,kit ; θ),

which is known exactly in closed form.

2.6 Asymptotic behaviour

This section discusses the asymptotic properties of the QML estimator (QMLE) of the non-

linear non-Gaussian model’s deterministic parameters. We consider the case where N is fixed

and T → ∞. We adopt a QML perspective for two reasons. First, for any real-world data

at hand, the statistical model, despite its considerable flexibility, is still unlikely to exactly

coincide with the true DGP. Second, the log-likelihood is approximate since we replaced

intractable densities such as p(zit|Yt−1; θ) in (8) by their approximating counterparts.
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Proposition 1 (Consistency): Under regularity conditions (see e.g. Gourieroux and

Monfort, 2002, Property 8.1), and assuming that the approximation of p(αt|Yt−1; θ) by

p̂(αt|Yt−1; θ) is close such that the approximation errors have finite second moments, the

QMLE converges almost surely to its pseudo-true value, i.e. θ̂QMLE
a.s.−→ θ∗0 as T → ∞.

Proposition 2 (Asymptotic normality): Under the above regularity conditions and ap-

proximation quality assumption, the QMLE is also asymptotically normally distributed, i.e.
√
T
(
θ̂QMLE − θ∗0

)
d−→ N

(
0,Ω−1

I

)
as T → ∞.

We refer to the discussion in Gourieroux and Monfort (2002, Ch. 8.4). The WLS regression

errors need to be sufficiently well-behaved such that a LLN and CLT can be applied to (10).

2.7 Diagnostic checks of approximation quality

While the filtering algorithm and accompanying parameter estimation method are intuitively

appealing, they do not imply that the error introduced by replacing p(αt|Yt; θ) by p̂(αt|Yt; θ)

is always negligible. This section outlines a diagnostic check to assess approximation quality.

The check effectively measures the distance between ln p(αt|Yt; θ) and ln p̂(αt|Yt; θ) over time

and over cross-sectional units.

We start by considering the criterion function (7). If this function were exactly equal

to zero, then the approximation would be perfect and the filter exact. In particular, the

random variable minb̃it,C̃it

∫
zit

[ln (p(yit|zit; θ)/p̂(yit|zit; θ))]2 p̂(zit|Yt; θ)dzit, can be thought of

as a squared disturbance term. The criterion function (7) can be restated in discretized form

as

σ̂2
it =

L∑
l,k=1

wl,k

(
ln p(yit|zl,kit ; θ)− ωit − b̂′itz

l,k
it +

1

2
zl,k

′

it Ĉitz
l,k
it

)2

,

where the Gauss-Hermite integration weights wit are defined below (7). This expression can
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be viewed as the sum of squared residuals corresponding to the least squares regression

ỹl,kit = x̃l,k′

it βit + ul,k
it l, k = 1, . . . , L, (10)

where ỹl,kit =
√
wl,k ln p(yit|zit; θ), x̃l,k

it =
√
wl,k(1, z

l,k′

it , vech(−1
2
zl,kit z

l,k′

it )′)′, βit = (ωit, b
′
it, vech(Cit)

′)′

and ul,k
it are the disturbance terms of interest.

Two issues deserve comment. First, (10) is a least squares regression with L2 pseudo-

observations for each scalar yit. There are thus N × T such regressions for each evaluation

of the log-likelihood. The computational speed associated with the least squares problem

(10) is thus welcome and essential. Second, the right-hand side regressors can be badly

conditioned for some trial values of θ. In such cases, a Ridge-type regression can be used,

mildly shrinking bit towards zero and Cit towards an appropriate non-singular matrix.

For each regression (10), a corresponding R-squared is given by

R̂2
it = 1−

[ L∑
l,k=1

(
ûl,k
it

)2 ]
/
[ L∑
l,k=1

(
ỹl,kit − ¯̃yit

)2 ]
, (11)

where ¯̃yit is the average ỹl,kit . We suggest plotting these R̂2
it over time, and studying their

descriptive statistics. The closer the R̂2
it are to one, the closer the fit between ln p(αt|Yt; θ)

and ln p̂(αt|Yt; θ).

3 Simulation study

We are particularly interested in addressing four questions with simulation experiments:

First, is our method able to distinguish lagged from contemporaneous factor dependence

in finite samples of realistic size? Second, is it maybe inappropriately pointing to factor

interactions that are not there? Third, is it able to provide more precise estimates of ft

and ht than simpler alternatives such as two-stage PCA? Finally, is it possibly subject to

approximation errors that accumulate over time? We establish that the answers to questions
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one and three are affirmative and otherwise negative.

3.1 Simulation design

Our simulation setup is similar to that of Doz et al. (2012), but now considers multiple

(r = 2) location factors and one (q = 1) scale factor. The data dimensions are chosen as

N = 8 and T ∈ {250, 500}, approximately in line with the dimensions of the macro panel

data set studied in Section 4. The data density is a Student’s t density with ν ∈ {10, 50},

where ν = 10 allows for outliers beyond those implied by a stochastic scale, and ν = 50

proxies the Gaussian case. This yields four data generating processes (DGPs) in total.

The true αt = (f1t, f2t, ht)
′ always follows a stationary VAR with one lag. The first

location factor f1t interacts with ht in a contemporaneous and lagged way, while the second

location factor f2t does not interact with ht at all. We use the same θ0 to generate S = 100

[N × T ] data sets {yit}(s), s = 1, . . . , S. Parameters θ0 are chosen with the above in mind

and otherwise approximately in line with those reported in Section 4. We then obtain θ̂
(s)
ML,

α̂
(s)
t|t , and α̂

(s)
t|T . To improve estimation speed we do not estimate back all parameters in θ,

but focus on 12 parameters of particular interest; their respective true values are indicated

by vertical lines in Figure 1 below.

3.2 Simulation results

We highlight three key findings.

First, the median maximum likelihood estimates are close to their true values, and the

sampling distribution of most parameters is approximately Gaussian. This is fortunate,

and also implies that our method correctly identifies factor interactions present in the DGP

without suggesting spurious interactions.

Figure 1 presents the sampling distributions of S = 100 maximum likelihood estimates

θ̂
(s)
ML for the DGP with T = 250 and ν = 50. The median parameter estimates are indicated

by a vertical dashed blue line, while the corresponding true values of θ0 are indicated by a
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Table 1: Filtering accuracy

R2 statistics from a regression of the true factors on a constant and estimated factors. f̂t
refers to location factors estimates (columns 3 – 5) and ĥt refers to scale factor estimates
(columns 6 – 8). Rows refer to four different simulation settings, with T ∈ {250, 500}
and ν ∈ {10, 50}. R2 statistics are reported for the approximate filter, the approximate
smoother, and two-stage PCA (2SPCA) as a point of comparison.

T ν f̂OENI
t|t f̂OENI

t|T f̂ 2SPCA ĥOENI
t|t ĥOENI

t|T ĥ2SPCA

250 10 0.855 0.853 0.849 0.336 0.375 0.210

500 10 0.860 0.861 0.850 0.373 0.416 0.216

250 50 0.871 0.872 0.870 0.330 0.354 0.211

500 50 0.877 0.880 0.871 0.356 0.387 0.222

red line. The lines are visibly close for both the location factor loading in Panel [1,1], the

scale factor loading in Panel [1,2], and all elements of the state transition matrix Φ. The

sampling distributions of the on-diagonal elements of Σ are somewhat skewed and resemble

those of (positive) standard deviation parameters. Parameters Φ3,1 and δh are estimated to

the right and left of their respective true values, and thus exhibit some finite-sample bias.

Parameters Φ3,1 and Σ1,3 are associated with (present) interactions between f1t and ht

and are estimated close to their true non-zero values. ParametersΦ3,2 andΣ2,3 are associated

with (absent) interactions between f2t and ht and are also estimated close to their true zero

values.

Second, the approximate smoother is more accurate than the approximate filter, and both

are always more accurate than two-stage PCA. Table 1 presents the R2 statistics across four

DGPs. R2 statistics are reported for the approximate filter, the approximate smoother, and

two-stage PCA. Figure 2 presents R2 statistics from a regression of the true factors on (a

constant and) the estimated location factors and scale factor, respectively. The R2 statistics
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thus address the question of what share of the true common variation in the data is recovered

by the estimated factors. While the improvement of estimation accuracy remains modest

for the common location factors, it becomes more pronounced for scale factors. Notably, for

T = 500 and ν = 10, the accuracy associated with ĥOENI
t|T is approximately twice as high

as that for ĥ2SPCA
t|T . Despite the impact of outliers, the approximate filter and approximate

smoother consistently maintain their superiority.

Finally, our analysis reveals no evidence of deterioration in approximation fit over time.

Such deterioration could arise from approximation errors that accumulate in undesirable

ways. Figure 3 presents R-squared statistics (computed using (11)) corresponding to the

approximating WLS regressions (as described in (10)). We divide the approximation errors

into five equally-sized time bins: 1-50, 51-100, 101-150, 151-200, and 201-250 (for a total

sample size of T = 250). Remarkably, the approximation fit remains remarkably stable, with

R2 statistics hovering around 99.1% in all bins.

18



Figure 1: Sampling distribution of θ̂
(s)
ML

Sampling distributions of maximum likelihood parameter estimates θ̂
(s)
ML, s = 1, . . . , 100.

The simulation settings are N = 8, T = 250, and ν = 50.
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Figure 2: Filtering accuracy

R-squared statistics from a regression of the true on the estimated location factors (top
panel) and scale factors (bottom panel). The panels in each row refer to the approximate
filter (left), the approximate smoother (middle), and two-stage PCA (right). The simulation
settings are N = 8, T = 250, ν = 50, S = 100.
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Figure 3: Approximation quality over time

R-squared statistics (11) corresponding to the approximating (weighted least squares)
regressions (10) over time. The approximation errors are divided horizontally into five
equally-sized time-bins, e.g. 1-50, 51-100, 101-150, 151-200, and 201-250 for T = 250. The
simulation settings are N = 8, T = 250, ν = 50, S = 100.
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4 Empirical illustration: Real GDP growth rates

4.1 Data

To illustrate our approach, we obtain end-of-quarter real GDP growth rates for G7 countries:

United States (USA), Japan (JPN), Germany (DEU), Great Britatin (GBR), France (FRA),

Italy (ITA), and Canada (CAN). The data range from 1961Q3 to 2022Q4, yielding N = 7

and T = 243. The countries are ordered in yit according to end-of-sample real GDP. All time

series are easily and publicly available from the OECD website. We consider non-annualized

log-changes yit = 100× (lnYit − lnYi,t−1), where Yit is country i’s real GDP, before applying

our methodology.

Figure A.1 in Web Appendix A provides a time series plot. For all countries, real GDP

growth takes particularly low values during the 1970s owing to global oil price shocks, during

the global financial crisis between 2008 and 2009, and during the Covid-19 pandemic recession

in 2020.

4.2 Model specification

We choose r = 2 location factors and q = 1 scale factor for our data, following a preliminary

principal components analysis and a study of Ahn and Horenstein (2013)’s information

criteria.

The loadings matrices Λ and l need to be restricted to ensure factor identification. To

identify f1t, we set ΛUSA,1 = 1 and leave the other parameters in Λ∗,1 unrestricted. To

identify f2t, we set ΛDEU,2 = ΛFRA,2 = ΛITA,2 = 1 along with ΛUSA,2 = ΛJAP,2 = ΛCAN,2 = 0

and leave ΛGBR,2 unrestricted. This strategic placement of 1s and 0s in Λ implies that f1t

can be interpreted economically as a global level factor, and f2t as an additional European

(group) factor.

For the scale factor loading matrix l, we restrict lUSA = 1 and leave the other loadings

unrestricted. This restriction identifies ht as the first country’s idiosyncratic term’s stochastic
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scale. The remaining elements are elasticities with respect to that baseline.

Finally, we model demeaned data ỹit = yit − ȳi,·, such that ci = 0. The state vector’s

unconditional mean δ is subsequently restricted such that E[ft] = δf = 0. The scale factor’s

unconditional mean E[ht] = δh remains unrestricted.

4.3 Parameter and factor estimates

This section discusses our empirical parameter and factor estimates.

Table 2 presents maximum likelihood estimates of the deterministic parameters of our

statistical model (1) – (3). Confidence intervals for each parameter are reported a 95%

significance level.

Two findings deserve comment. First, estimates of the state equation’s transition matrix

Φ and scale matrix Ση point to significant factor interactions, both at a lag (via a full

matrix Φ) and contemporaneously (via a full Ση). Some off-diagonal elements in Φ are

significantly different from zero, with coefficient Φ3,2 particularly large. The estimate of

Ση, and its implied correlation matrix Rη, suggests a negative contemporaneous correlation

between both location factors and the scale factor. The implied correlation coefficients are

Rη,3,1 = Rη,3,2 ≈ −0.2.

Second, the data are moderately fat-tailed at ν ≈ 10. This is the case even though the

model already features stochastic volatility. This is intuitive, however, since the Covid-19

pandemic recession with its associated extreme observations is part of the estimation sample.

Figure 4 reports filtered and full-sample estimates of ft and ht. Shaded areas indicate

U.S. recession dates for f1t, euro area recession dates for f2t, and both types of recession dates

for ht. Both location factors take negative values during recessions. This is as expected, and

intuitive. The scale factor ht is counter-cyclical and takes particularly high values during

the 2008 global financial crisis and the 2020 Covid-19 pandemic recession. Both location

and scale factors are fairly precisely estimated, and the filtered and full-sample estimates are

relatively close.

23



4.4 A closer look at factor interactions

This section discusses likelihood-ratio (LR) hypothesis tests to study whether location and

scale factors are partially or fully independent. In addition, it discusses impulse response

function estimates to shed light on shock propagation and persistence.

Table 3 summarizes our LR test outcomes. It distinguishes four models: First, a full

model (F) for which Φ and Σ are unrestricted. Second, a restricted model (R1) that does

not allow for lagged dependence. Here, Σ is unrestricted but Φ3,1 = Φ3,2 = Φ1,2 = Φ1,3 ≡ 0.

Third, a restricted model (R2) that does not allow for any contemporaneous dependence.

Here, Φ is unrestricted but Σ
1/2
3,1 = Σ

1/2
3,2 ≡ 0. Finally, a block-diagonal fully restricted model

(R3), in which the location and scale factors interact neither contemporaneously nor with a

lag.

The message from Table 3 is clear. All p-values are below 0.01. The RGDP data un-

equivocally prefer an unrestricted VAR for all factors.

Figure 5 plots impulse response function estimates for factors f1t, f2t, and ht to a one

standard deviation shock to the global factor f1t. Shock identification is based on Choleski

timing restrictions, implying that f1t cannot contemporaneously respond to a shock to f2t

and ht, and f2t cannot contemporaneously respond to a shock to ht. Factor interactions are

evident: A positive shock to f1t, representing a much improved global economic outlook, has

a delayed and long-lasting positive effect on the four European countries via f2t, and sig-

nificantly reduces macroeconomic uncertainty (i.e., the scale of each country’s idiosyncratic

component) over the following eight quarters.
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Table 2: Parameter estimates

Maximum likelihood parameter estimates for the nonlinear dynamic factor model. G7
countries’ real GDP growth rates are considered between 1961Q3 to 2022Q4. Countries
are ordered according to size, as United States, Japan, Germany, United Kingdom, France,
Italy, and Canada. Confidence intervals are reported a 95% significance level.

Par. estimates Par. estimates

ν =

[
9.70

[6.06,17.62]

]

Λ =



1 0
[-] [-]

2.00 0
[1.38,2.59] [-]

−0.03 1
[-1.09,1.08] [-]

0.98 −0.27
[0.48,1.44] [-0.51,-0.04]

−0.12 1
[-1.14,0.97] [-]

0.27 1
[-0.77,1.37] [-]

1.20 0
[0.84,1.56] [-]



l =



1.00
[-]

0.56
[0.31,0.79]

0.75
[0.51,0.97]

1.43
[1.01,1.86]

1.91
[1.48,2.35]

1.54
[1.16,1.91]

1.12
[0.82,1.45]



δ =


0
[-]

0
[-]

−2.26
[-3.09,-1.39]

 Φ =


0.88 −0.06 0.01

[0.71,1.04] [-0.17,0.06] [-0.01,0.03]

0.43 0.57 0.01
[0.07,0.79] [0.47,0.67] [-0.02,0.03]

−0.71 0.78 0.88
[-1.64,0.26] [0.43,1.14] [0.81,0.94]



Ση =


0.04 0.00 −0.02

[0.02,0.07] [-0.04,0.05] [-0.07,0.02]

0.00 0.03 −0.02
[-0.04,0.05] [0.02,0.09] [-0.06,0.01]

−0.02 −0.02 0.37
[-0.07,0.02] [-0.06,0.01] [0.22,0.64]

 Rη =


1 0.07 −0.19
[-] [-0.81,0.82] [-0.47,0.13]

0.07 1 −0.23
[-0.81,0.82] [-] [-0.43,0.10]

−0.19 −0.23 1
[-0.47,0.13] [-0.43,0.10] [-]
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Figure 4: Filtered & full-sample common factor estimates

Filtered and full-sample (smoothed) estimates of two common location factors f1t (top panel),
f2t (middle panel), and one common scale factor ht (bottom panel). Shaded areas indicate
either U.S. recessions according to the NBER (top panel), euro area recessions according to
the euro area business cycle dating committee (middle panel), or both (bottom panel). The
estimation sample ranges from 1961Q3 to 2022Q4.
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Table 3: LR-tests outcomes

Maximal log-likelihood values and LR test outcomes are reported for four model specifica-
tions. First row: a full model (F), where Φ and Σ are unrestricted. Second row: a restricted
model (R1), where Φ3,1 = Φ3,2 = Φ1,2 = Φ1,3 = 0. Third row: a restricted model (R2),

where Σ
1/2
3,1 = Σ

1/2
3,2 = 0. Fourth row: a fully restricted model (R3), where the location and

scale factors are fully independent.

Model Restriction on maxLL LR stat p-val

F - -9119

R1 Φ -9139 39.46 0.00

R2 Σ -9129 19.22 0.00

R3 Φ,Σ -9140 41.80 0.00

Figure 5: Impulse response functions

Impulse response of f1t (left), f2t (middle), and ht (right) to a one standard deviation
shock to the global location factor f1t. Shock identification is based on Choleski timing
restrictions. Standard error bands are bootstrapped.
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4.5 Approximation quality

This section assesses the approximation quality underlying the approximate filter by studying

the R2 statistics (11). When these R2s are close to one, then ln p(αt|Yt; θ) and ln p̂(αt|Yt; θ)

are virtually indistinguishable.

Table 4 reports descriptive statistics for the R2s (11) and suggests a tight approximation.

Typical (median) R2 statistics are 0.91 for France at the low end and 0.997 for Germany at

the top end. The R2s are negatively skewed, as they are bounded from above (by one), but

rarely drop below 0.6 (the 10th percentile for France). We conclude that, overall, the error

introduced by replacing p(αt|Yt; θ) by p̂(αt|Yt; θ) is modest for our empirical data at hand.

Figure 6 provides a density plot of the approximating models’ residuals ulk
it (left panel) and

a Hill plot to study their extreme tail behavior (right panel). The approximating residuals

are centered around zero by construction and appear approximately symmetric. The Hill

plot suggests that first two, possibly three, moments of ulk
it exist, and that a law of large

numbers and a central limit theorem can be applied to these residuals as a result.
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Table 4: Approximation quality

Descriptive information on R2 statistics (11) from the approximating WLS regressions (10)
evaluated at θ̂ML. There are T R2 statistics per country, and N × T R2 statistics in total.
P10 and P90 refer to the 10% and 90% percentile.

Mean Std Median Min Max P10 P90

USA 0.954 0.064 0.984 0.708 1.000 0.865 0.999

JPN 0.984 0.019 0.992 0.857 1.000 0.957 1.000

DEU 0.990 0.021 0.997 0.802 1.000 0.977 1.000

GBR 0.888 0.138 0.949 0.495 1.000 0.625 0.999

FRA 0.855 0.151 0.909 0.403 1.000 0.600 0.993

ITA 0.889 0.144 0.958 0.447 1.000 0.633 0.998

CAN 0.923 0.100 0.969 0.587 1.000 0.775 0.999

Figure 6: Approximation errors visual diagnostics

Left panel: Kernel density of approximating models’ residuals ulk
it . Right panel: Hill plot for

ulk
it .
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4.6 Out-of-sample forecasting

This section studies the out-of-sample forecasting performance of the nonlinear non-Gaussian

dynamic factor model (1) – (2). The model’s deterministic parameters are estimated by QML

using (9), and the factors are forecast using the approximate filter and treating the future

data as missing.

We consider both point and density forecasting accuracy, and relate the dynamic factor

model’s forecasts to three points of comparison. First, we consider a restricted model with

fully independent factors, shutting off any factor interactions. Both the full and restricted

models are estimated for r = q = 1 for simplicity and to focus on the strongest factor for

each moment. Second, we consider Student’s t density-based “static” forecasts. Here, time-

invariant country-specific location, scale, and degrees-of-freedom parameters are fitted to

the estimation sample via maximum likelihood. Finally, we consider AR(1)-GARCH(1,1)-

based forecasts, where parameters are estimated by maximum likelihood to fit each country’s

univariate time series.

Table 5 reports the forecasting outcomes. For each model, the deterministic parameters

are estimated once on data between 1961Q3 and 2010Q4 and are not re-estimated as the

forecasting origin moves towards the end of the sample 2022Q4. As a result, the estimation

sample contains the volatile 1970s and the global financial crisis, but excludes the euro area

sovereign debt crisis between 2011 and 2012 and the Covid-19 pandemic in 2020. We consider

1, 1–2, 1–4, 5–8, and 9–12 quarters ahead forecasts. Point forecasts are evaluated based on

root mean squared forecasting error (RMSFE) statistics; density forecasts are evaluated

based on log score and censored likelihood (CSL) score statistics. The CSL is computed

to focus on the predictive densities’ fit in the left tail, below the 0.25 empirical quantile

associated with each country’s data.
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Table 5: Out-of-sample forecasting accuracy

We consider both point (RMSFE) and density (log score, CSL score) forecasting accuracy.
Forecasting horizons range between 1 and 12 quarters ahead. The estimation sample ranges
from 1961Q3 to 2010Q4. The evaluation sample ranges from 2011Q1 to 2022Q4. The
forecasting models are explained in the main text.

Model RMSFE Log scores CSL scores
h 1 1-2 1-4 5-8 9-12 1 1-2 1-4 5-8 9-12 1 1-2 1-4 5-8 9-12

Full USA 0.44 1.03 1.52 2.01 2.02 -0.65 -0.93 -1.24 -1.57 -1.60 -0.42 -0.60 -0.67 -0.67 -0.66
JPN 1.08 1.47 1.75 2.01 2.00 -1.55 -1.73 -1.87 -1.95 -1.93 -0.99 -1.14 -1.18 -1.19 -1.17
DEU 0.61 1.22 1.75 2.30 2.29 -1.07 -1.25 -1.48 -1.77 -1.75 -0.38 -0.57 -0.65 -0.77 -0.69
GBR 0.57 2.28 3.49 4.78 4.80 -0.61 -1.00 -1.45 -2.11 -2.17 -0.35 -0.65 -0.77 -0.86 -0.82
FRA 1.08 1.91 2.88 3.86 3.87 -1.04 -1.35 -1.74 -2.15 -2.16 -0.99 -1.20 -1.27 -1.26 -1.19
ITA 1.16 1.85 2.59 3.32 3.31 -1.35 -1.65 -1.98 -2.22 -2.13 -1.05 -1.26 -1.31 -1.16 -0.94
CAN 0.61 1.36 1.94 2.53 2.53 -0.87 -1.16 -1.48 -1.81 -1.80 -0.58 -0.80 -0.88 -0.89 -0.81
G7 0.79 1.59 2.27 2.97 2.97 -1.02 -1.29 -1.61 -1.94 -1.93 -0.68 -0.89 -0.96 -0.97 -0.90

Restr. USA 0.45 1.04 1.53 2.01 2.02 -0.65 -0.98 -1.31 -1.65 -1.68 -0.48 -0.64 -0.70 -0.71 -0.72
JPN 1.11 1.49 1.76 2.01 2.01 -1.59 -1.77 -1.92 -2.01 -2.00 -1.03 -1.19 -1.23 -1.24 -1.23
DEU 0.61 1.22 1.75 2.30 2.29 -1.03 -1.26 -1.53 -1.86 -1.84 -0.40 -0.60 -0.69 -0.82 -0.75
GBR 0.58 2.29 3.49 4.77 4.80 -0.55 -1.05 -1.57 -2.32 -2.38 -0.41 -0.71 -0.84 -0.97 -0.94
FRA 1.09 1.92 2.89 3.86 3.87 -1.17 -1.47 -1.88 -2.33 -2.36 -1.17 -1.31 -1.35 -1.35 -1.31
ITA 1.19 1.87 2.60 3.32 3.31 -1.50 -1.76 -2.10 -2.37 -2.30 -1.26 -1.38 -1.39 -1.25 -1.05
CAN 0.61 1.37 1.95 2.53 2.53 -0.90 -1.23 -1.56 -1.91 -1.91 -0.65 -0.85 -0.91 -0.95 -0.89
G7 0.80 1.60 2.28 2.97 2.98 -1.06 -1.36 -1.70 -2.06 -2.07 -0.77 -0.95 -1.02 -1.04 -0.98

Static USA 0.52 1.09 1.54 2.00 2.02 -0.79 -0.89 -1.02 -1.20 -1.27 -0.44 -0.54 -0.57 -0.58 -0.61
JPN 1.11 1.47 1.72 1.95 1.95 -1.51 -1.59 -1.67 -1.73 -1.72 -0.89 -0.97 -0.99 -1.00 -1.00
DEU 0.67 1.26 1.76 2.30 2.29 -1.10 -1.19 -1.33 -1.55 -1.52 -0.41 -0.53 -0.59 -0.70 -0.63
GBR 0.61 2.31 3.50 4.77 4.80 -0.69 -0.82 -0.99 -1.37 -1.43 -0.33 -0.47 -0.52 -0.61 -0.59
FRA 1.13 1.93 2.88 3.85 3.86 -0.92 -1.03 -1.23 -1.50 -1.53 -0.74 -0.87 -0.93 -1.01 -0.97
ITA 1.26 1.89 2.60 3.30 3.29 -1.26 -1.38 -1.55 -1.71 -1.65 -0.82 -0.95 -1.00 -0.92 -0.73
CAN 0.69 1.42 1.96 2.52 2.52 -0.97 -1.10 -1.27 -1.51 -1.52 -0.54 -0.67 -0.73 -0.79 -0.74
G7 0.86 1.63 2.28 2.96 2.96 -1.03 -1.14 -1.30 -1.51 -1.52 -0.60 -0.71 -0.76 -0.80 -0.75

AR(1)- USA 0.58 0.61 0.64 0.73 0.78 -1.34 -1.43 -1.64 -1.89 -1.92 -1.21 -1.30 -1.28 -1.15 -1.08
GARCH(1,1) JPN 0.74 0.78 0.85 1.03 1.14 -1.98 -2.11 -2.27 -2.27 -2.11 -1.55 -1.68 -1.61 -1.34 -1.21

DEU 0.93 1.01 1.07 1.15 1.15 -1.10 -1.36 -1.72 -2.14 -2.14 -0.40 -0.60 -0.70 -0.82 -0.76
GBR 0.55 0.57 0.59 0.63 0.66 -1.00 -1.18 -1.48 -2.78 -3.18 -1.02 -1.20 -1.24 -1.57 -1.57
FRA 0.58 0.67 0.81 1.24 1.55 -1.37 -1.44 -1.79 -2.47 -2.66 -1.38 -1.36 -1.37 -1.39 -1.31
ITA 0.69 0.79 0.92 1.18 1.22 -2.06 -2.04 -2.24 -2.47 -2.47 -1.74 -1.68 -1.57 -1.32 -1.15
CAN 0.57 0.61 0.66 0.77 0.84 -1.46 -1.57 -1.80 -2.20 -2.16 -1.28 -1.40 -1.38 -1.36 -1.23
G7 0.66 0.72 0.79 0.96 1.05 -1.47 -1.59 -1.85 -2.32 -2.38 -1.23 -1.32 -1.31 -1.28 -1.19
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We highlight three findings. First, suppressing factor interactions is costly, not only in

terms of in-sample fit, see Section 4.4, but also in terms of out-of-sample point and density

forecasting accuracy. The full model’s RMSFE statistics are typically lower than those of

the restricted model, particularly at shorter horizons of up to one year. The full model’s log

scores and CSL scores are uniformly better as well than the those of the restrictive model.

Second, the full model achieves more accurate point forecasts than the static model

for forecasting horizons up to one year ahead. The static model’s density forecasts are

competitive or better, possibly because of country-specific degrees-of-freedom parameters

that are not present in the factor model. Low degrees-of-freedom do well given some of the

extreme observations encountered in the evaluation sample.

Finally, the fully dynamic factor model performs worse than AR(1)-GARCH(1,1)-based

forecasts in terms of point forecasting accuracy (RMSFE), but performs considerably better

in terms of density forecasting accuracy (log scores and CSL scores). The latter’s Gaus-

sian conditional density is ill-suited to describe some of the evaluation sample’s extreme

observations.

5 Concluding discussion

We introduced a novel nonlinear non-Gaussian dynamic factor model that allows location

and scale factors to interact freely within an unrestricted VAR. By relaxing the assumption of

no interactions between these two types of factors, we gain a more flexible and possibly much

more realistic representation of the underlying DGP. We provided approximate filtering and

smoothing recursions to analyze the statistical model, allowing us to simultaneously estimate

all latent factors along with all the model’s deterministic parameters in a single step. An

empirical illustration using G7 countries’ real GDP growth rates illustrates the utility of

our approach for in-sample analysis and out-of-sample forecasting. By relying on our new

recursions, we extracted meaningful information from noisy observations and enhanced our
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understanding of the system’s nonlinear dynamics.

The paper presents several possible routes for future research. First, the approximate

filter could be adapted to study an even more general class of nonlinear non-Gaussian state

space models, and its empirical performance in such cases would be of interest. For example,

the observation density p(yit|ft, ht, θ) could denote a (non-differentiable) Asymmetric Laplace

density, allowing researchers to model the time-varying quantiles associated with panels of

real GDP growth rates, inflation rates, or financial asset returns. Second, the set of diagnostic

checks could be extended. For example, new diagnostic procedures could include statistical

tests of the null hypothesis that the approximating model is in fact exact. Finally, the

framework could be extended to deal with a high-dimensional cross section, allowing our

framework to be applied in various financial asset pricing settings.
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Web Appendix to

“Nonlinear non-Gaussian dynamic factor models with

interacting location and scale factors”



Web Appendix A: Data plots and eigenvalue analysis

Figure A.1 plots G7 countries’ non-annualized real GDP growth rates at a quarterly fre-

quency. Countries are ordered according to size (end-of-sample GDP): USA, Japan, Ger-

many, Great Britain, France, Italy, and Canada.

Figure A.2 reports PCA eigenvalues for the conditional mean factors. We choose r = 2,

capturing approximately 72% of the panel’s total variance.
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Figure A.1: G7 countries’ real GDP growth rates

G7 countries’ non-annualized real GDP growth rates at a quarterly frequency. Countries
are ordered according to size (end-of-sample GDP): USA, Japan, Germany, Great Britain,
France, Italy, and Canada. The sample ranges from 1961Q3 to 2022Q4. The top panel’s
vertical axis is capped at +/- 8 percent to improve visibility.
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Figure A.2: Eigenvalues

Left panel: PCA eigenvalues (scree plot) for conditional mean factors. Right panel:
cumulative share of total variance explained as the number of factors increases.
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