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1 Introduction

The Global Financial Crisis (GFC) of 2008–2009 underscored the critical need for robust macro-

prudential policies; see e.g. the reports by Brunnermeier et al. (2009) and de Larosiere (2009).

In particular, the severity of the GFC exposed a pronounced underestimation of medium-term

downside risks to the economy resulting from a gradual accumulation of financial vulnerabilities

over time. Since 2009, a plethora of theoretical and empirical frameworks have been developed

to assess and manage downside risks, including, for example, Brunnermeier and Sannikov (2014),

Boissay et al. (2016), He and Krishnamurthy (2019), Adrian et al. (2019), Caldara et al. (2021),

Adrian et al. (2022), Suarez (2022), and Carriero et al. (2024).

Yet, effective macro-prudential policies cannot focus solely on mitigating downside risks, but

must balance risk mitigation with growth considerations. As former UK Chancellor George Os-

borne (2012) put it, “we do not want the financial stability of a graveyard.” How to formalize this

key trade-off as an economic decision problem under uncertainty, and how to study it empirically

for an advanced market-based economy, however, is currently unclear. This is despite policymak-

ers’ urgent need for analytical support and a formal decision framework’s theoretical appeal.

This paper develops a comprehensive framework to formalize the decision problem faced by

the macro-prudential policymaker, and applies it to euro area data. To our knowledge, we are

the first to extend the “risk management” approach of Greenspan (2003, p. 3), Cecchetti (2006),

and Kilian and Manganelli (2008) to consider macro-prudential decisions. Thinking quantitatively

about macro-prudential policy requires a loss (or utility) function, and, to our knowledge, we

are the first to stipulate an explicit loss function for macro-prudential policy, drawing inspiration

from key policymakers’ speeches. To evaluate policy, we propose a novel fully-tractable structural

quantile vector autoregressive (SQVAR) model, and show how to estimate its parameters equation-

by-equation using a novel four-step Gibbs sampler.1 Although several “macro-at-risk” stylized

1While SQVAR models are not new to the literature (e.g., Chavleishvili and Manganelli, 2024), the SQVAR model
in this paper is novel in considering a more general setting (modeling more than two endogenous variables at more than
one lag), allowing for exogenous variables and additional deterministic terms, and proposing a particularly tractable
Bayesian inference methodology for its statistical analysis.
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facts have by now been pointed out in existing work, our framework is unique in that virtually

all of them can be captured simultaneously and studied in one coherent, single-step inferential

framework. Finally, whenever possible, we relate our empirical results to models of financial

frictions or other macroeconomic models.

Current measures of economic downside risk are borrowed from the financial risk management

literature. For example, Growth-at-Risk (GaR) is Value-at-Risk (VaR) applied to the gross domes-

tic product (GDP) instead of a bank’s investment portfolio (e.g., Prasad et al., 2019, Adrian et al.,

2022, and Lang et al., 2023). GaR is the tail quantile (usually 5%) of the variable of interest. The

main advantage of GaR is its simplicity: by definition, GDP growth will not be below the estimated

GaR with 95% probability. However, measuring downside risk by a single quantile has been crit-

icized in the risk management literature on the grounds that it does not take the whole tail of the

distribution into account, as well as for not being a coherent (e.g. sub-additive) measure of risk. In

addition, it captures only one part (the downside) of the macro-prudential decision problem, and is

silent on the upside potential for the economy.

We address the limitations of GaR by introducing growth shortfall (GS) as a measure of down-

side risk, and by complementing it with growth longrise (GL) to gauge the economy’s upside

potential. GS (GL) equals expected growth conditional on growth realizing a value below (above)

a certain threshold, multiplied by the probability of the conditioning event. Zero serves as a natural

threshold when applied to GDP growth, distinguishing economic contractions from expansions. By

design, the sum of growth shortfall and longrise equals expected growth.2 If the macro-prudential

policymaker assigns equal importance to both components, its goal would be to maximize ex-

pected growth. However, a study of policymakers’ speeches (see below) strongly suggests that

their objective is, typically, to prevent severe and painful economic contractions without unnec-

essarily limiting growth potential. The decision framework proposed in this paper formalizes this

trade-off by assigning greater weight to GS than to GL.

We illustrate our decision framework by applying it to the euro area economy. The empirical

2GS and GL do not coincide with expected shortfall and expected longrise as defined in Adrian et al., 2019, p.
1277; see also Section 2.1 below.
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implementation necessitates estimating the joint predictive distribution of all macroeconomic vari-

ables of interest.3 We recover flexible, and potentially asymmetric predictive distributions using

a SQVAR model. SQVAR extends the concept of structural VAR to quantile modeling. Essen-

tially, while VARs explain the mean dynamic interaction of the endogenous variables of a system,

QVARs explain the dynamic interaction of any quantile of the variables of interest. Structural iden-

tification can be obtained, for example, through short-run timing restrictions. Once the model is

estimated for all quantiles, estimates of all predictive distributions can be obtained by simulation;

the main text and web appendix provide the necessary details.

To our knowledge, we are the first to estimate an SQVAR model’s parameters equation-by-

equation using Bayesian methods. We rely predominantly on established methodology (Yu and

Moyeed, 2001, Kozumi and Kobayashi, 2011, Khare and Hobert, 2012), but also make an econo-

metric contribution. Leveraging the Bayesian approach, our estimates of the euro area parameters

depend on an informative prior density to sharpen inference, which we obtain from a different but

related sample (several decades of United States (U.S.) data). That is, we first obtain posterior

estimates from U.S. data, which then serve as informative priors for the euro area parameters. The

prior variance, which represents the “weight” assigned to the prior density, can be estimated from

the euro area data following the Empirical Bayes approach of Giannone et al. (2015). Estimating

the prior variance extends the three-step Gibbs sampler of Khare and Hobert (2012) to a novel

four-step sampler. Overall, our approach to inference allows us to obtain precise posterior esti-

mates of measures of downside risk and upside potential, among other nonlinear functions of the

model’s deterministic parameters. In addition, we obtain appropriate finite-sample credible inter-

vals, despite a relative paucity of euro area quarterly macro data and a considerable number of

model parameters to be estimated.

3Because of the asymmetric emphasis on downside risk, expected growth is no longer a sufficient statistic to
solve the macro-prudential risk management problem. In principle, the mean could still be a sufficient statistic if the
random variables of interest were symmetric and with time-invariant higher moments. In such a case, estimates of
the conditional means of the random variables of interest, augmented by suitable assumptions of the distribution of
the residuals, would suffice. However, there is by now substantial empirical evidence that financial variables exert
a time-varying and asymmetric impact on real variables (see, inter alia, Adrian et al., 2019, Adrian et al., 2022,
Delle Monache et al., 2024, Lang et al., 2023, and Iseringhausen et al., 2025). This necessitates the use of suitable
econometric models that account for these characteristics.
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Our preferred SQVAR model includes a measure of the financial cycle, real GDP growth,

HICP inflation, financial stress, and a short-term risk-free interest rate and uses four lags. Its

parameters are estimated from euro area data between 1990Q1 and 2022Q4. A global commodity

price index is included as an additional exogenous variable. The financial cycle is a measure of

credit dynamics in the economy and represents an intermediate target variable on which macro-

prudential policymakers can act by activating or adjusting macro-prudential instruments. Financial

stress characterizes financial crises and can amplify other shocks (e.g., He and Krishnamurthy,

2019). Overall, our choice of variables reflects the idea that financial stability is of concern to

policymakers if it is triggered by an impairment of the financial system and has real economic

consequences, e.g. in terms of future economic activity.4 The monetary part of the system (with

inflation and interest rate) is included to take the impact of the central bank’s actions into account.

We highlight four results. First, we argue that macro-prudential policymakers’ speeches are

sufficiently clear about the ends and means of macro-prudential policy for us to derive an explicit

loss (utility) function from them. An explicit loss function is a prerequisite to thinking quantita-

tively about optimal macro-prudential policy. For example, Danthine (2012), Constancio (2016),

and Carney (2020) all agree that the main aim of macro-prudential policy is to make sure the fi-

nancial system supports the economy; this requires that the financial system is strong enough to

continue lending to households and businesses when economic shocks occur. All policymakers

stress a counter-cyclical dimension of macro-prudential policy, aimed at smoothing (or “taming”)

the financial cycle, and agree that applying macro-prudential instruments in a counter-cyclical way

is crucial. The speech by Carney (2020) comes closest to proposing an explicit objective function.

We build on his formulation and show that its arguments are related to GS and GL.5

4The ECB definition of financial stability refers to “the risk that the provision of necessary financial products and
services by the financial system will be impaired to a point where economic growth and welfare may be materially
affected;” see ECB (2019). Similarly, the Financial Stability Board, International Monetary Fund, and the Bank for
International Settlements define systemic risk as a “risk of disruption to financial services that is (i) caused by an
impairment of all or parts of the financial system, and (ii) has the potential to have serious negative consequences for
the real economy;” see FSB (2009).

5Our reliance on policy speeches as a primary source has also been exploited recently by Bertsch et al. (2025),
who utilize LLMs and advanced natural language processing to extract a central bank’s mandate from a vast archive
of speeches delivered between 1960 and 2022.
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Second, our estimated SQVAR is characterized by substantial asymmetries. Our quantile im-

pulse response function estimates in particular suggest that the system’s dynamic properties differ

considerably across quantiles. For example, a shock to financial stress shifts the left tail of euro

area future real GDP growth further to the left, while leaving its conditional median and right tail

approximately unaffected. In addition, a shock to financial stress deflates the financial cycle in the

medium term (approximately similarly across quantiles), and impacts the lower and upper quan-

tiles of inflation with different signs, resulting in less inflation uncertainty. Vice versa, financial

stress responds to a shock to the financial cycle by initially decreasing for six quarters and then in-

creasing; this pattern is considerably more pronounced for stress’s upper tail (the 0.9 quantile) than

its lower tail (the 0.1 quantile). In sum, the estimated macro-financial interactions imply that the

upper quantiles of the predictive GDP growth distribution are less volatile than its lower quantiles

(cf. Adrian et al., 2022, Lang et al., 2023), and lend empirical support to macroeconomic mod-

els that allow for asymmetric impacts of financial variables on macroeconomic outcomes. This

includes, for example, nonlinear macro-financial models with occasionally binding financing con-

straints such as He and Krishnamurthy (2019), Van der Ghote (2021), and Mendicino et al. (2025).

Our estimates lend less support to macro DSGE models that are solved to first order (log-linearized)

and subsequently equipped with Gaussian shocks.

Third, counterfactual simulations suggest that an active macro-prudential policy regime, tar-

geted at smoothing the financial cycle, could considerably improve economic welfare by increasing

economic trend (mean) real GDP growth while lowering growth volatility, negative growth skew-

ness, and its excess kurtosis. This is achieved mostly by decreasing the probability of observing

periods of high financial stress.6 Interestingly, managing the financial cycle also reduces inflation

volatility, its positive skewness, and (mild) kurtosis. This, in turn, allows short-term (monetary

policy) interest rates to be less volatile.

Fourth, our framework provides a metric to assess whether the macro-prudential stance is too

6To compare macro-economic outcomes across counterfactual settings we need to assume that the presence of a
new policy regime does not change that SQVAR’s parameters to such an extent that it makes the thought experiment
uninteresting. We discuss the Lucas’ critique in the main text.
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tight or too loose conditional on available information. Welfare calculations for leaning against an

exuberant financial cycle are based on the objective function as derived above. Flexible predictive

distributions are obtained from our SQVAR model as needed. We find that the welfare gains

from macro-prudential tightening can be positive or negative. Historically, the gains from macro-

prudential policy tightening tended to be positive when the financial cycle takes high values (i.e.

when credit growth and house price appreciation are high), short-term interest rates and inflation

are low, the economy is growing, and financial stress is low. Our results thus lend support to the

view that macro-prudential policymakers should act in a counter-cyclical fashion by easing policy

in bad times (to increase loss-absorbing capacity) and tightening policy in good times (to lean

against exuberance; see also Van der Ghote, 2021).

Our work is part of a rapidly growing body of research that studies downside risk in macroe-

conomic outcomes. Most of this work has focused on the risk of considerable declines in real

GDP, brought about by a deterioration of financial conditions; see e.g. Adrian et al. (2019), Prasad

et al. (2019), and Caldara et al. (2021). The International Monetary Fund (IMF), the European

Central Bank (ECB), and the Federal Reserve Bank of New York now routinely publish GaR es-

timates for major world economies; see IMF (2017), ECB (2019), and New York Fed (2022).

These developments have motivated a proliferation of modeling frameworks to assess the severity

of extreme events associated with key economic variables, including single-equation QR models

(Adrian et al., 2019), panel QR models (Brandao-Marques et al., 2020, Adrian et al., 2022, Lang

et al., 2023), panel-GARCH models (Brownlees and Souza, 2021), fully non-parametric kernel

regression models (Adrian et al., 2021), combined linear vector autoregressive (VAR) and single-

equation QR models (Duprey and Ueberfeldt, 2020, Forni et al., 2025), nonlinear Bayesian VAR

models (Caldara et al., 2021, Carriero et al., 2024), and quantile FAVAR models (Korobilis and

Schröder, 2025). Plagborg-Moller et al. (2020) provide a critical review of this literature.

We proceed as follows. Section 2 presents our decision framework. Section 3 introduces the

statistical model. Section 4 describes the euro area data. Section 5 discusses our key empirical

results. Section 6 concludes. A web appendix provides further technical and empirical results.
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2 The risk management decision framework

This section first defines measures of downside risk and upside potential. Some of these measures

are related to well-known concepts from the financial risk management literature. We then de-

rive an explicit objective function from policymaker’s speeches, and integrate these parts into an

encompassing decision framework.

2.1 Measures of downside risk and upside potential

Growth-at-risk: Our first measure of adverse impact is growth-at-risk (GaRγ
t,t+h) at confidence

level γ ∈ (0, 1), defined implicitly by the probability

P
[
yt+h ≤ GaRγ

t,t+h|Ωyt

]
= γ, (1)

where yt is the quarterly annualized real GDP growth rate between time t− 1 and t, h = 1, . . . , H ,

and H is a certain prediction horizon. The information set Ωyt contains all data known at time

t; see Section 3 for details. In words, GaRγ
t,t+h is implicitly defined by the time t probability of

quarterly annualized output growth at t+h falling below GaRγ
t,t+h, which by definition is set equal

to γ (see, for example, McNeil et al., 2005, Ch. 2.2).

Growth shortfall: Our second measure of adverse real economic impact is growth shortfall

(GS), defined as

GSτ
t,t+h =

∫ τ

−∞
yt+h dFt,t+h(yt+h)

= E [yt+h|yt+h < τ,Ωyt]× P [yt+h < τ |Ωyt] , (2)

where Ft,t+h is a time-t conditional cdf, and E [·|Ωyt] denotes a time-t conditional expectation. In

principle, the threshold τ ∈ R could be set to a low conditional quantile, say τ = GaRγ
t,t+h. If so,

then the first factor in (2) would coincide with the familiar notion of expected shortfall; see e.g.

McNeil et al. (2005, Ch. 2) and Adrian et al., 2019, p. 1277. Alternatively, τ could be set to a
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certain unconditional quantile, or to zero. In this case, the first factor in (2) does not coincide with

expected shortfall from the financial risk management literature.7 The second factor in (2) is the

conditional (on Ωyt) probability of experiencing yt+h < τ .

We set τ = 0 in Section 5 below. If τ = 0, GS can be factored into two intuitive terms:

the expected loss conditional on a contraction, and the probability of experiencing a contraction.8

While both components could, in principle, be of interest in their own right, GS summarizes them

tractably into one metric. When τ = 0, GS corresponds to the economic question: what is the time

t-expected contraction of the economy at time t+ h.

All the above risk measures are economically intuitive and straightforward to communicate.

GS (2), however, has theoretical and practical advantages over GaR (1). First, while both risk

measures can account for the asymmetric impact of financial variables on the economy, only (2)

takes the entire left tail into account. Second, (scaled) expected shortfall is a coherent risk measure,

while any single conditional quantile in isolation is not (Artzner et al., 1999). For example, GS

contributions are sub-additive, while GaR contributions are not. This feature is desirable if one,

for instance, sought to study sector contributions to aggregate downside risk.

Growth longrise: When considering financial stability policies aimed at containing downside

risk, the upper quantiles of future GDP growth, should, ideally, not be negatively affected. For

setting up the decision framework in Section 2.2, we consider a measure of upside potential that

complements GS. We define the growth longrise (GL) as

GLτ
t,t+h =

∫ ∞

τ

yt+h dFt,t+h(yt+h)

= E [yt+h|yt+h > τ,Ωyt]× P [yt+h > τ |Ωyt] . (3)

If τ = 0, then (3) corresponds to the question: what is the time-t expected expansion of the

economy between t + h − 1 and t + h? Similarly to GS, GL combines the expected growth

7GS also does not coincide with “downside entropy” in Adrian et al., 2019, p. 1276, which measures the extent to
which time-t’s predictive density differs from its unconditional counterpart below the predictive density’s median.

8To see this, note that E [yt+h|yt+h < τ,Ωyt] ≡
∫ ∞
−∞ yt+h·1{yt+h<τ}dFt,t+h(yt+h)∫ ∞

−∞ 1{yt+h<τ}dFt,t+h(yt+h)
=

∫ τ
−∞ yt+hdFt,t+h(yt+h)

P[yt+h<τ |Ωyt]
.
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given an expansion with the conditional probability of experiencing an expansion.9 Given the

complementarity between GS and GL, their sum equals the expected growth rate of the economy

between t+ h− 1 and t+ h,

E [yt+h|Ωyt] =

∫ τ

−∞
yt+hdFt,t+h(yt+h) +

∫ ∞

τ

yt+hdFt,t+h(yt+h) = GSτ
t,t+h + GLτ

t,t+h. (4)

2.2 Deriving an objective function from policymakers’ speeches

This section derives an explicit loss (or utility) function from macro-prudential policymakers’

speeches. An explicit loss function is a prerequisite to thinking quantitatively about optimal macro-

prudential policy. We focus on three speeches by European policymakers: Danthine (2012), then

Vice Chairman of the Governing Board of the Swiss National Bank, Constancio (2016), then Vice-

President of the ECB, and Carney (2020), then Governor of the Bank of England.

All three policymakers stress that the raison d’étre of macro-prudential policy is to make sure

the financial system supports the economy (e.g., Carney, 2020, p. 7). This requires the financial

system to be strong enough to continue lending to households and businesses when economic

shocks occur. In particular, macroeconomic downturns should not be amplified by unsustainable

debt burdens or funding mismatches. To accomplish these goals, macro-prudential policymakers

concentrate on systemic risks, i.e., those large enough to materially impact economic growth.

In addition to addressing structural (non-cyclical) systemic risks, the three policymakers stress

a counter-cyclical dimension of macro-prudential policy, aimed at smoothing (“influencing”; or

“taming” in Danthine, 2012) the financial cycle. Macro-prudential policy should be “preemptive

and ... counter-cyclical” (Constancio, 2016), while being cognizant of the trade-offs between sup-

porting economic growth and mitigating downside risks.

The speech by Carney (2020, p. 11) comes closest to proposing an explicit objective function,

9To our knowledge, the term “longrise” was coined by Adrian et al. (2019) as the antonym to “shortfall.” GL does
not coincide with their “expected longrise” nor “upside entropy.”
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stated as

min
mt

L ≡
H∑

h=0

δh
[
Et

[
f(GaRt+h)

]
− λ̃Et

[
yt+h

]]
, (5)

where mt is a “policy setting” at time t, H is the policymaker’s time horizon (which should be

thought of as representing “the medium-to-long run”), δ ≤ 1 is a discount factor, Et is a conditional

(on current information) expectation, f is a possibly-convex but otherwise unspecified function,

GaRt+h is a measure of downside risk, indicating how much GDP could fall as a consequence of

current financial vulnerabilities, λ̃ > 0 is a preference parameter, and Et

[
yt+h

]
is the expected

growth rate of the economy.

While (5) goes a long way towards putting forward an explicit objective function, it is not en-

tirely explicit about the policymaker’s horizon H , which particular quantile is indicated by GaRt+h,

and the precise shape of f . Starting from (5), we obtain a closely-related objective function in two

steps. First, we identify its first term, Et

[
f(GaRt+h)

]
, with our expectation-based measure of

downside risk, GSt+h = Et [(yt+h|yt+h < τ)× 1 {yt+h < τ}]; see (2). This allows us consider a

continuum of lower quantiles rather than tracking a particular one while ignoring others, and take

the entire left tail into account. Both factors comprising GS implicitly depend on GaR.10 Second,

we reformulate (5) as a utility (=negative loss) maximization problem and move the penalty term

to linearly scale downside risk. This yields

max
mt

U ≡
H∑

h=1

δh
[
(λp − 1)GSt,t+h

(
yt+h(ct(mt), . . .)

)
+ Et

(
yt+h(ct(mt), . . .)

)]
, (6)

where λp > 1 is a weight determining the policymaker’s aversion to negative realizations of output

growth, and where the dependence of yt+h on the financial cycle ct (via mt) and other contempo-

raneous and future variables is made explicit.

Since GSτ
t,t+h and GLτ

t,t+h add to expected growth, see (4), the objective function (6) can be

10Recall that GSt+h ≤ 0 is bounded from above (assuming τ ≤ 0). GSt+h increases non-linearly with the condi-
tional mean of yt+h, owing to its two factors.
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rewritten in terms of GS and GL. The utility maximization problem then becomes

max
mt

U ≡
H∑

h=1

δh
[
GLt,t+h

(
yt+h(ct(mt), . . .

)
+ λpGSt,t+h

(
yt+h(ct(mt), . . .)

)]
, (7)

where the penalty parameter λp > 1 is the same as in (6). The expression (7) makes it obvious

that, although weighted unequally, all predictive quantiles of yt+h are taken into account when

evaluating the likely impact of macro-prudential interventions.

Several points regarding the policymaker’s objective function (6) / (7) deserve comment. First,

the objective function (6) trades off supporting expected growth (a good) against mitigating down-

side risks (also a good). While linear-quadratic specifications are commonly assumed for monetary

policy objective functions (Carney, 2020), they are less natural for macro-prudential policy because

there are no obvious “target” values to aim at. The objective function (6) therefore does not take

this familiar form. (This said, the closer GS is to zero, the better.)

Second, when proposing (6), we assumed that the macro-prudential policymaker has a macro-

prudential instrument mt, or vector of instruments, that she can use to mitigate medium-term

downside risks to the economy by influencing the financial cycle ct(mt). The influence of the

financial cycle on the economy’s predictive growth distribution can be direct
(
ct(mt) → yt

)
, or

indirect via its impact on other contemporaneous and future variables
(
ct(mt) → ct+1, . . . , ct+h,

yt, . . . , yt+h−1, st, . . . , st+h−1, . . . → yt+h

)
, including financial conditions (stress) and short-term

interest rates. Our empirical model allows us to capture both direct and indirect forms of trans-

mission; see Section 3 below. Web Appendix A.1 provides a brief and highly selective review of

the literature on how capital-, liquidity-, and borrower-based macro-prudential instruments mt can

influence the financial cycle ct(mt).

Finally, a number of further points regarding (6) and (7) deserve comment. For space consider-

ations, Web Appendix A.2 continues the present discussion. We emphasize that, while the specific

mathematical form of our loss function builds most closely on Carney (2020), the underlying prin-

ciples and objectives motivating this form are widely shared across policymakers.
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3 Structural quantile vector autoregression

3.1 The statistical model

This section describes the SQVAR model used to obtain flexible and potentially asymmetric pre-

dictive distributions of all endogenous variables.

We consider a series of random variables {xt : t = 1, . . . , T}, where xt ∈ Rn is an n-vector

with ith element denoted by xit for i = 1, . . . , n and n ∈ N. Before discussing the model, we

need to define a sequence of information sets. This allows us to work with the stratified modeling

strategy as suggested by Wei (2008) and adapted in Chavleishvili and Manganelli (2024). The

information sets are defined recursively as

Ω1t ≡ {xt−1, xt−2, . . .}

Ωit ≡ {xi−1,t,Ωi−1,t} i = 2, . . . , n,

adding observations a scalar at a time, nT times, starting from i = t = 1. As an example, Ω3t, say,

contains all lagged values xt−1, . . . , x1 as well as the contemporaneous x1t and x2t.

Vector xt follows a SQVAR(1) process if the γi quantile of xit can be written as

Qγ1(x1t|Ω1t) = ω1(γ1) + a11(γ1)x1,t−1 + a12(γ1)x2,t−1 + . . .+ a1n(γ1)xn,t−1

Qγ2(x2t|Ω2t) = ω2(γ2) + a021(γ2)x1t+

+ a21(γ2)x1,t−1 + a22(γ2)x2,t−1 + . . .+ a2n(γ2)xn,t−1

...

Qγn(xnt|Ωnt) = ωn(γn) + a0n1(γn)x1t + . . .+ a0n,n−1(γn)xn−1,t+

+ an1(γn)x1,t−1 + an2(γn)x2,t−1 + . . .+ ann(γn)xn,t−1, (8)

for any γi ∈ (0, 1), i ∈ {1, . . . , n}. When n = 1, this simplifies to the quantile autoregressive
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process of Koenker and Xiao (2006). In compact notation, we write an SQVAR(p) process as

Qγ(xt|Ωt) = ω(γ) + A0(γ)xt +

p∑
j=1

Aj(γ)xt−j,

where γ ≡ [γ1, . . . , γn]
′, Qγ(xt|Ωt) is shorthand notation for the left hand-side of system (8) that

associates each element of xt with its corresponding information set, and ω(γ) and Aj , j = 0, . . . , p

stack their respective terms. A0(γ) is a lower-triangular n × n matrix, with zeros on the main

diagonal. In the context of a standard linear VAR, this representation is equivalent to identifying

the system by assuming a Cholesky decomposition for the covariance matrix of the residuals. In the

present, more general context, the lower-triangular A0(γ) allows for orthogonal structural shocks

that have distinct, quantile-specific impacts; see also 3.2 below. The remaining n × n coefficient

matrices Aj(γ) for j = 1, . . . , p can be restricted or unrestricted.

In addition to endogenous variables xt, empirically-appropriate SQVAR model specifications

can also include further deterministic terms dt and exogenous variables zt. This yields the model’s

general form as

Qγ(xt|Ωt) = ω(γ) + A0(γ)xt +

p∑
j=1

Aj(γ)xt−j +B(γ)dt +

p∑
j=0

Cj(γ)zt−j. (9)

where B(γ) and Cj(γ) are conformable matrices. Web Appendix B provides additional detail on

(9), discusses when model-implied predictive quantiles can cross (and when not), and presents a

simple bivariate example.

3.2 Shock identification

Structural identification in SQVAR models is invariably linked to the definition of a “multivariate

quantile” and “structural shock” in a non-linear, state-dependent setting. In a standard linear VAR,

the contemporaneous impact matrix A0 captures the instantaneous causal relationships among vari-

ables, and a Cholesky decomposition implies a specific recursive ordering for identifying orthogo-
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nal structural shocks. In an SQVAR, these contemporaneous relationships are themselves allowed

to be quantile-dependent. To disentangle truly orthogonal structural shocks that have distinct,

quantile-specific impacts, some form of recursive (lower-triangular) specification of A0(γ) is often

a natural and necessary starting point. This ensures that the contemporaneous structural shocks,

which drive movements in specific conditional quantiles, are orthogonal to each other within that

quantile. In the absence of a universally accepted definition for a “multivariate quantile” that inher-

ently yields a non-triangular, fully identified contemporaneous impact matrix for all quantiles, the

recursive approach offers a clear and implementable method for defining such structural shocks.

Matrix A0(γ) in (9) is lower-triangular with zeros on the main diagonal. This is sufficient

to exactly identify the model. Identification can be sharpened by considering additional short-

run, long-run, and/or sign restrictions. We do so below when we impose two additional short-run

restrictions on A1(γ); see Sections 5.1 and 5.2 for details.

While long-run and sign restrictions are a powerful tool in linear VARs (e.g., Antolı́n-Dı́az and

Rubio-Ramı́rez, 2024), applying them to SQVARs is coonsiderably more intricate. In an SQVAR,

the impulse responses, and thus the signs of the effects, depend on the specific quantile being

considered. Take a positive “supply shock,” for instance: it might boost median output but also

increase overall volatility. This could translate to a negative impact on the left tail of the output

distribution (worsening extreme downturns) while still positively affecting the right tail (boosting

extreme upturns). This quantile-dependent behavior means that a simple set of sign restrictions

—- typically imposed on the median or mean response —- might not hold true across all relevant

quantiles. Instead, researchers would need a richer, quantile-specific set of sign restrictions.11 Such

an approach would be challenging to justify in a macro-prudential setting, and potentially difficult

to implement consistently across the entire distribution.

Finally, if an appropriate instrument for a specific shock of interest were available, then that

11One possibility suggested by Chavleishvili and Manganelli (2024) aims to mitigate some of these complexities.
Their approach involves applying common VAR identification strategies, including sign and long-run restrictions, to
the conditional expectations implied by the QVAR model, which can be recovered e.g. by simulation. This approach
implicitly assumes that the chosen identification scheme, when applied to the mean dynamics, remains valid for the
entire conditional distribution.
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instrument could potentially be used to identify the shock’s impact on all variables across their

conditional quantiles. Such an instrument could, for example, be added to a recursively-identified

SQVAR model as a first variable in the system (as an “internal instrument”; see Plagborg-Møller

and Wolf, 2021, p. 957). To our knowledge, however, the formal development and robust imple-

mentation of such an approach is still an area of active research, and theoretical guarantees do not

yet exist. We do not use instrumental variables below for these reasons.

3.3 Parameter estimation

We estimate the SQVAR parameters using Bayesian methods. Building upon already-established

methodology (particularly Kozumi and Kobayashi, 2011 and Khare and Hobert, 2012) is possible

since the lower-triangular structure on A0 allows us to estimate the model’s parameters equation-

by-equation over a discretized set of q = 19 quantiles Q = {0.05, 0.10, . . . , 0.90, 0.95} using n×q

univariate quantile regressions.

We use informative priors below to sharpen inference. Specifically, we first obtain parameter

estimates from decades of U.S. data. The U.S. parameters’ posterior is then used to formulate an

informative prior for the corresponding euro area model parameters. The weight put on U.S. prior

information is estimated from euro area data, extending the three-step Gibbs sampler of Khare

and Hobert (2012) to a novel four-step sampler. The difference between the U.S. and euro area

estimates reflects the informational content of euro area data.

Web Appendix C.1 presents our novel four-step Gibbs sampler used for posterior inference.

The additional step estimates a prior precision parameter by sampling from a known inverse-

Gamma distribution. Web Appendix C.3 discusses prior specifications. We take particular care

that the prior does not introduce cross-quantile or cross-variable restrictions, as this would inval-

idate an equation-by-equation estimation approach. Web Appendix C.2 derives the fourth step of

the Gibbs sampler.
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3.4 Density forecasting and counterfactual scenarios

This section explains how density forecasts and counterfactual scenarios can be obtained from the

SQVAR model (9). To simplify the exposition, we here consider a special case of (9), with p = 1

and B(γ) = C0(γ) = C1(γ) = 0.

Consider an n-vector u∗
1 ≡ [u∗

11, . . . , u
∗
n1]

′ whose elements are draws from the i.i.d. uniform

distribution with support on (0, 1). Then a draw from the one-step ahead forecast distribution of

xT+1 can be obtained as

x∗
T+1 = (In − A0(u

∗
1))

−1(ω(u∗
1) + A1(u

∗
1)xT ),

where In is the n-dimensional identity matrix, and where we have replaced γ with the draw u∗
1. The

parameters associated with the selected quantiles u∗
1 can be estimated (or were estimated previously

and then stored). Conditional on x∗
T+1, a draw from the two-step ahead forecast distribution of

xT+2 is x∗
T+2 = (In − A0(u

∗
2))

−1(ω(u∗
2) + A1(u

∗
2)x

∗
T+1), where u∗

2 is another n-vector with i.i.d.

draws from the standard uniform distribution. Iterating this process forward, we can obtain a

sample path (x∗
T+1, x

∗
T+2, . . . , x

∗
T+H) of any desired length H .

With n variables, q quantiles, and H steps ahead, there are (qn)H possible paths at any forecast

origin. Even for moderate values (e.g., q = 19 quantiles, n = 5 variables, and a forecasting

horizon of H = 16 quarters), the number of possible paths becomes astronomically large, making

it computationally infeasible to explicitly enumerate and store every single terminal node of the

“tree.” To explore the “tree” of all potential future paths at any time t = 1, . . . , T , we simulate S

future paths for xt+h, h = 1, . . . , H quarters ahead. Once predictive densities are available, the

estimation of GS and GL is straightforward. Web Appendix D.2 provides additional detail on the

SQVAR’s multi-step ahead predictive distribution.

Rather than moving through the “tree” of potential future values of xt+h completely at random,

we can also focus on a subset of potential paths, or, in the extreme, consider only one path in

isolation. Such a subset of potential paths can be thought of as a counterfactual ‘scenario,’ or
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model-based thought experiment, that conditions on a fixed sequence of future conditional quantile

realizations for a subset of variables in xt. We use such scenarios when considering the potential

of active macro-prudential policy for reducing economic growth volatility and negative skewness

in Section 5.4. Web Appendix D.3 provides additional detail.

3.5 Quantile impulse response functions

We obtain quantile impulse response function estimates by simulation. Intuitively, given a draw

from the parameters’ posterior distribution, a structural shock to any variable can be propagated

forward using (9). Doing this many times allows us to obtain predictive quantiles of all variables

in the system at any horizon h = 1, . . . , H . These predictive quantiles are compared to their no-

shock counterparts, which are also obtained by simulation. Obtaining QIRF estimates in this way

requires a loop within a loop: an outside loop drawing from the posterior density of the parameters,

and an inside loop propagating forward both the shock and no-shock scenarios. Web Appendix D

discusses implementation details.

4 Euro area data

Our baseline statistical model for the endogenous variables xt contains five endogenous variables

and one exogenous variable (a global commodity price index). The five endogenous variables

consist of a financial cycle indicator, annualized quarter-on-quarter HICP inflation, annualized

quarter-on-quarter real GDP growth, a measure of financial stress, and the three-month OIS interest

rate. Web Appendix E provides a detailed description of our data.

The financial cycle indicator used in our empirical analysis below is that of Lang et al. (2019).

It is available at the quarterly frequency and is designed to capture risks stemming from domestic

(real) credit volumes, real estate markets, asset prices, and external imbalances. Lang et al. (2019)

demonstrate that the indicator increases, on average, three to four years before the onset of systemic

financial crises.
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As a measure of system-wide financial stress, we use quarterly averages of the ECB’s re-

vised daily composite indicator of systemic stress (CISS) as discussed in Chavleishvili and Kre-

mer (2025). The CISS includes 15 individual market-based financial stress indicators that cover

the main segments of a typical modern financial system: financial intermediaries, money markets,

equity markets, bond markets, and foreign exchange markets. The 15 indicators are aggregated

into a single statistic in a way that takes their time-varying cross-correlations into account. As a

result, the CISS takes higher values when stress prevails in most market segments at the same time,

capturing the idea that financial stress is more systemic, and more dangerous for the economy as a

whole, whenever financial instability spreads widely across different parts of the financial system.

To construct a consistent time series of short-term euro area interest rates, we splice together

three time series: quarterly averages of the daily German Frankfurt Interbank Offered Rate (FI-

BOR, 1990Q1 to 1993Q4), the three-month Euro Interbank Offered Rate (EURIBOR, 1994Q1 to

1998Q4), and the three-months-ahead euro Overnight Index Swap rate (1999Q1 to 2022Q4); see

Web Appendix E.4 for details. This data construction underpins the empirical analysis in Section

5, where we evaluate macro-prudential policy through the distribution of future macroeconomic

outcomes.

5 The risk management approach in practice

This section first discusses model specification, model adequacy, and quantile impulse response

functions. It then establishes that macro-prudential policy can contribute to decreasing an econ-

omy’s growth rate volatility, negative skewness, and excess kurtosis, mainly by stabilizing the

overall macro-financial environment. Finally, we offer a metric of the macro-prudential policy

stance, and study when a tightening of macro-prudential policy is most likely to be beneficial.
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5.1 Model specification

We select a n = 5-variable SQVAR (9) with p = 4 lags as our preferred model.12 The vector of

endogenous variables xt contains a financial cycle indicator ct, annualized quarter-on-quarter HICP

inflation πt, annualized quarter-on-quarter real GDP growth yt, the financial stress measure CISS

st, and the three-month OIS interest rate rt, in this order, as xt = (ct, πt, yt, st, rt)
′.13 Slow-moving

variables, such as the financial cycle (which is constructed from multi-year growth rates), inflation,

and real GDP growth, are ordered first, while fast-moving financial variables, such as the CISS and

the OIS rate, are ordered last. The ordering of variables matters given the recursive information

set defined in Section 3.1. Timing restrictions are standard in the empirical macro-financial VAR

literature; see e.g. Christiano et al. (1999), Kilian (2009), and Gilchrist and Zakrajsek (2012),

among many others.

We include four dummy variables dt corresponding to four Covid-related observations between

2020Q1 and 2020Q4. This inclusion neutralizes the effect of these influential but unusual obser-

vations on the posterior parameter estimates.

Finally, we prevent the occurrence of a “price puzzle” (i.e., the counter-intuitive finding that

a contractionary monetary policy shock causes an increase in inflation, rather than the expected

decrease) in two complementary ways. First, we include global commodity prices as an exogenous

variable zt (and also consider p = 4 lags there). Including commodity prices has been shown to

prevent or mitigate the price puzzle for U.S. data; see e.g. Sims (1992) and Hanson (2004).14

Second, we follow Estrella (2015) and impose a transmission lag on the structural (direct) impact

of short-term interest rates on the real economy. Specifically, two elements of A1(γ) are restricted

to zero (one element in the row for inflation and one element in the row for real GDP). As a result,

12Information criteria, such as the Deviance Information Criterion DIC, AIC, and BIC, point to different numbers
of lags p, depending on the considered criterion, variable, and quantile. Weighing all evidence, p = 4 is at the
conservative upper end of the indicated values for our quarterly data.

13The ECB working paper version of this paper undertakes an extensive variable selection exercise, indicating that
short-term interbank rates can be a useful variable to consider in an SQVAR. In addition, short-term interest rates have
been linked to the accumulation of financial vulnerabilities over time, see e.g. Boissay et al. (2016), and to increasing
leverage and reach-for-yield behavior in financial markets, see e.g. Brunnermeier and Sannikov (2014) and Akinci
et al. (2020). Short-term interest rates, in turn, respond to GDP and inflation through systematic monetary policy.

14The parameters in C(γ) are restricted such that global commodity prices can only directly impact the inflation
process. Doing so prevents a positive response of GDP to a global negative supply shock.
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short-term interest rates (i.e., monetary policy) can still have a first-lag impact on the real economy,

but, given the triangular structure of (9), only through the financial cycle (ordered first in xt).

5.2 Model adequacy, prior robustness, and additional robustness checks

We assess the adequacy and robustness of the empirical results presented in this section along

several dimensions. Details and additional figures are provided in the Web Appendix.

First, we evaluate the out-of-sample performance of the SQVAR model’s predictive density

for real GDP growth, the key variable of interest in Sections 5.3–5.5. The model’s out-of-sample

predictive quantiles are appropriately calibrated, in the sense that nominal and empirical coverage

rates are close. This assessment is important because maximizing the asymmetric Laplace log-

likelihood (or, equivalently, minimizing the quantile regression check function) guarantees correct

calibration of one-step-ahead conditional quantiles in-sample, but not out-of-sample. Using En-

gle and Manganelli (2004)’s Dynamic Quantile test, we find that the model captures the relevant

dynamic dependencies in the data. Additional details are reported in Web Appendix F.1.15

Second, we study the sensitivity of the results to alternative prior choices for the euro area SQ-

VAR parameters. In addition to our baseline informative prior, we consider a standard Minnesota

prior and an uninformative flat prior. Across these specifications, the resulting quantile impulse

response functions are qualitatively similar, although less precisely estimated under the flat prior.

These results are documented in Web Appendix F.2.

We also examine robustness with respect to the hyperprior governing the shrinkage parameter

λi(γ). Adopting an alternative hyperprior that implies stronger global shrinkage towards the U.S.

estimates leaves the quantile impulse responses broadly unchanged. We nonetheless prefer a looser

hyperprior, reflecting the view that shrinkage may differ across quantiles and between financial and

macroeconomic variables. Details are provided in Web Appendix F.3.

Next, we assess the effects of estimating the model using monthly rather than quarterly data.

15A recent study by Surprenant (2025) conducts a comprehensive out-of-sample forecasting comparison across
QVAR, linear VAR, and VAR-SV specifications for closely related macro-financial data. QVAR models frequently
improve upon the benchmarks and rarely perform worse.
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The differences are modest, suggesting that our results are not driven by the data frequency, despite

the reliance of the shock identification strategy on timing restrictions. These findings are reported

in Web Appendix F.4. We further study the sensitivity of the results to the choice of estima-

tion sample endpoints. Ending the sample in 2008Q2 or 2019Q4, thereby excluding major crisis

episodes, leads to some changes in the estimates, as expected, but does not alter the qualitative

conclusions; see Web Appendix F.5. Finally, we analyze the role of the transition lag introduced

in Section 5.1. Removing this lag allows for an immediate impact of interest rates on inflation and

real GDP and results in a price puzzle, with inflation initially increasing following a monetary pol-

icy tightening, while the remaining quantile impulse responses remain similar. Details are reported

in Web Appendix F.6.

Taken together, these checks indicate that the empirical model combines tractability with suf-

ficient flexibility to address the policy-relevant questions studied in Sections 5.3–5.5.

5.3 Parameter estimates and quantile impulse response functions

Figures G.1 to G.8 in Web Appendix G.1 report our posterior mean estimates of all SQVAR model

parameters. Posterior mean estimates are shown with corresponding 95% credible intervals. Least

squares parameter estimates are visible as horizontal lines and are provided as a point of compar-

ison. The parameter posterior estimates can differ substantially across quantiles, and from their

respective ordinary least squares estimates. Parameter heterogeneity across quantiles is particu-

larly visible for the parameter matrices A1 to A4.

Figure 1 plots quantile impulse response functions (QIRF) for all endogenous variables as

implied by the parameter estimates. For readability, the figure plots the upper (90th percentile)

and lower (10th percentile) tails as well as the median (50th percentile). The QIRFs summarize all

contemporaneous and lagged interactions between all endogenous variables. The generally rather

low contemporaneous relationships between the model variables (captured via A0; see Figure G.2)

imply that the QIRF are qualitatively but also quantitatively not strongly affected by the specific

ordering of the variables in xt.
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In some cases, the QIRFs show pronounced asymmetries, while in other cases the differences

between the quantiles are less pronounced and within the credible intervals.

Consistent with the vulnerable growth literature (e.g., Adrian et al., 2019, Caldara et al., 2021,

Korobilis and Schröder, 2025), the response of real GDP growth to a shock in the CISS (Figure

1’s panel [3,4]) is much stronger in its left tail (the 0.1 quantile) than in its center and right tail (the

0.9 quantile). Thus, a given increase in financial stress depresses economic growth much more

strongly in the lower part of the distribution than in the upper part.

Figure 1’s panel [2,4] reports the impact of financial stress on euro area inflation. Both tails are

sensitive to financial stress, and respond with opposite signs. As a result, a shock to stress (i.e., a

tightening of financial conditions) leads to less inflation uncertainty in the future (cf., for example,

López-Salido and Loria, 2024).

The response of the CISS to a shock to the financial cycle (Figure 1’s panel [4,1]) indicates

an initial dampening of stress followed by an increase after approximately two years. This pattern

is particularly pronounced for the CISS’s upper tail (the 0.9 quantile), which displays a marked

negative response in the short term that reverses after approximately eight quarters. Vice versa,

positive shocks to the CISS deflate the financial cycle in the medium term (see Figure 1’s panel

[1,4]). These findings are in line with work on the “term structure” of GaR (see, for example,

Adrian et al., 2021 and Lang et al., 2023).

The numerous “macro at risk” stylized facts discussed above are not necessarily new to the

literature. Instead, they are, overall, in line with cited previous work. We stress, however, that,

to our knowledge, we captured virtually all of them, simultaneously, for euro area data, within a

single integrated dynamic framework. The reported credible intervals around the QIRFs are ob-

tained from appropriate single-step inference and did not require first modeling a set of conditional

quantiles and afterwards fitting (skewed) parametric densities.
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Figure 1: Quantile impulse response function estimates

Quantile impulse response functions implied by the posterior estimates reported in Figures G.1-G.8. QIRF estimates are based on 400 draws from the posterior
distribution, and 2×20, 000 simulations per posterior draw to obtain shocked and baseline quantiles of all variables. The shock size is equal to one standard deviation of
the shocked variable’s median regression residuals. Variables are ordered financial cycle (first row), HICP inflation (second row), real GDP growth (third row), financial
stress (CISS, fourth row), and the three-month OIS rate (fifth row). Credible intervals are at a 95% level. The estimation sample is 1990Q1 to 2022Q4.
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Figure G.9 in Web Appendix G.1 presents the posterior mean estimates of the hyperprior pa-

rameter (λi(γ)) that scales the (U.S.) prior’s variance. The estimates λ̂i(γ) take an interesting

U-shape. The U-shape suggests that the euro area economy resembles the U.S. economy most

closely in the center of the predictive distributions, and less so in the lower and upper tails. This

is intuitive, as the euro area has been in trouble, or doing very well, mostly for euro area-specific

reasons (such as, for example, the 1992 recession following the German reunification, and the

2010-2012 euro area sovereign debt crisis and subsequent recovery).16

Figure G.11 in Web Appendix G.2 plots the 5%, 10%, 50%, 90%, and 95% predictive quantile

of real GDP growth, at any time t, as implied by our statistical model. As a result of the pronounced

macro-financial interactions depicted in Figure 1, the lower quantiles for future real GDP growth

are considerably more volatile than its upper quantiles. For example, for the one-quarter-ahead

forecast, the predictive quantiles’ standard deviations decrease (almost) monotonically: from 2.66

and 2.59 for the 5% and 10% quantile, to 1.85 for the median quantile, to 1.44 and 1.53 for the

90% and 95% quantile. We also note that the asymmetry in the predictive density decreases with

the forecasting horizon.

Web Appendix H reports SQVAR parameter and credible interval estimates for U.S. data. The

estimates are broadly in line with those for the euro area. For example, growing financial vulnera-

bilities shift the right tail of the U.S. CISS towards more positive values. A shock to the U.S. CISS

shifts the left tail of the predictive GDP growth distribution towards more negative values while

leaving the right tail less affected.

Overall, the pronounced asymmetries in Figures 1, G.11, and H.10 lend support to nonlinear

macroeconomic models with a financial sector that feature occasionally binding financing con-

straints and/or a “volatility paradox.” Examples of such macro models include Brunnermeier and

Sannikov (2014), Boissay et al. (2016), He and Krishnamurthy (2019), and Mendicino et al. (2025).

16Figure H.9 in Web Appendix H presents the posterior mean estimates λ̂i(γ) from U.S. data. These estimates do
not follow a U-shape, suggesting that it is not the down-weighting of an increasing share of the sample observations
(via the QR’s log-likelihood function as one moves further into the tail) that necessitates a less informative prior per
se, but economic factors.
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5.4 The potential of macro-prudential policy

This section investigates the difference an active macro-prudential policy regime could have made

on the evolution of key macroeconomic variables had such an active regime existed between

1991Q1 and 2022Q4. Specifically, we consider three ‘worlds’: one actually-observed, and pre-

dominately characterized by a passive macro-prudential policy; one characterized by a counterfac-

tual “aggressive” macro-prudential policy regime that forcefully smooths the financial cycle; and,

finally, one characterized by a “moderate” macro-prudential policy regime that strikes a middle

ground between the former two.17

To compare macro-economic outcomes across different counterfactual scenarios we need to

assume that the presence of a new policy regime does not change that SQVAR’s parameters to

such an extent that it makes the thought experiment uninteresting. This is known as the Lucas

(1976) critique: changes in economic policy can influence agents’ expectations and thus behavior,

potentially altering a VAR model’s reduced-form parameters. We here assume that the SQVAR

parameters remain unaffected across scenarios, and note that this is more believable for the “mod-

erate” than for the “aggressive” policy regime (cf., for example, Leeper and Zha, 2003).

To implement the counterfactual scenarios, we first determine the conditional quantiles that

were realized historically using the estimated SQVAR. This is straightforward: At each t =

1, . . . , T , with SQVAR parameters fixed at, for example, their full sample posterior estimates,

we forecast the endogenous variables one period ahead, and then note the conditional quantiles

that are closest to the realized data. Put differently, we determine the conditional quantiles (from

among a grid of q = 19 quantiles; see Section 3.3) that minimize the forecast error. This proce-

dure yields a series of conditional quantile realizations. By construction, starting from t = 1, the

historical conditional quantile realizations replicate the observed data. This process is similar to a

historical decomposition in a linear SVAR model; see e.g. Kilian and Lütkepohl (2017, Ch. 4).

The active policies are implemented by allowing the policymaker to adjust the financial cycle

17For our counterfactual policy scenarios to be meaningful, macro-prudential policy must employ instruments that
are effective in managing the financial cycle. We recall that Web Appendix A.1 summarizes the nascent empirical
literature on the efficacy of capital-, liquidity-, and borrower-based macro-prudential instruments.
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Figure 2: The financial cycle in two different experiments

The historical financial cycle (“Realized”) and two estimates of the flattened financial cycle that would have been

obtained had the “aggressive” or the “moderate” counterfactual active policy regime been adopted. The credible

bands are at a 68% confidence level, based on 10,000 posterior draws from the full-sample posterior density, using

1991Q1 as the forecast origin. For each draw, we identify the historically-realized conditional quantiles of all

variables and then perform the policy experiment as described in the main text. Gray-shaded areas indicate CEPR

euro area recession periods.

by influencing its conditional quantile realizations. The conditional quantiles of all other variables

in the system remain as previously identified.

Under the “aggressive” policy regime, the financial cycle is set to its conditional median at

each time. Here, a (potentially unrealistically) powerful macro-prudential policymaker does what-

ever it takes to ensure that the financial cycle evolves as “expected” conditional on the past. By

contrast, the “moderate” policymaker is less aggressive and merely adjusts the financial cycle’s

quantile realizations by half relative to the median. For example, this implies that a historical 0.9

conditional quantile realization is now adjusted downward to the 0.7 conditional quantile (halfway

to the median), and a historical 0.3 conditional quantile realization is now adjusted upwards to

the 0.4 conditional quantile. This strikes a middle ground between where the financial cycle has

historically been and where it goes to under the aggressive scenario.
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Table 1: Moments of euro area macro variables across policy experiments
Unconditional moments (in rows) of key euro area macroeconomic variables (in four panels) across three scenarios

(“Realized,” “Aggressive,” “Moderate,” in columns). The “Realized” columns refer to historical data and are provided

as points of comparison. The “Aggressive” and “Moderate” columns refer to two policy experiments and report

posterior means and 95% credible intervals in square brackets. The policy experiments are described in the main text.

The year 2020 is excluded when computing moments owing to Covid-19.

HICP inflation Real GDP growth

Realized
“Aggressive”

policy
“Moderate”

policy Realized
“Aggressive”

policy
“Moderate”

policy

Mean 2.304 2.327
[2.082, 2.645]

2.303
[2.162, 2.453]

1.698 1.708
[1.301, 2.064]

1.728
[1.604, 1.849]

Std. dev. 1.946 1.857
[1.681, 2.048]

1.852
[1.710, 2.011]

2.395 2.052
[1.823, 2.285]

2.109
[1.961, 2.268]

Skew 1.528 1.141
[0.671, 1.616]

1.231
[0.826, 1.636]

-1.742 -0.982
[−1.713,−0.268]

-1.295
[−1.881,−0.680]

Excess
kurtosis 4.425 2.924

[1.312, 4.693]

3.259
[1.1823, 4.845]

9.967 6.521
[3.504, 9.834]

7.957
[5.455, 10.743]

CISS Three-month OIS rate

Realized
“Aggressive”

policy
“Moderate”

policy Realized
“Aggressive”

policy
“Moderate”

policy

Mean 0.148 0.127
[0.073, 0.170]

0.135
[0.123, 0.148]

3.074 3.072
[2.010, 4.108]

3.108
[2.795, 3.438]

Std. dev. 0.169 0.124
[0.095, 0.168]

0.132
[0.118, 0.147]

3.330 3.261
[2.867, 3.737]

3.211
[3.026, 3.397]

Skew 1.893 1.292
[0.929, 1.841]

1.487
[1.176, 1.812]

0.907 1.102
[0.586, 1.606]

1.064
[0.867, 1.261]

Excess
kurtosis 4.400 1.492

[0.102, 3.963]

2.371
[0.993, 3.991]

-0.092 0.215
[−0.744, 1.420]

0.150
[−0.241, 0.603]
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Figure 2 plots the historical financial cycle (black line) against the financial cycle that obtains in

the two counterfactual ‘worlds’ (blue and orange solid lines). By construction, each active policy

flattens the financial cycle compared to its realized path (up to a discretization error), particularly

in the first two-thirds of the sample. We observe that the financial booms during the late 1990s and

mid-2000s, before the GFC in 2008–2009, are particularly affected, suggesting that these booms

were driven primarily by the financial cycle’s high quantile realizations rather than those of the

other endogenous variables in the system. The figure also indicates that the post-2008 financial

cycle contractions would have been considerably less severe under the two active policies.

Table 1 reports the first four unconditional moments of key euro area macroeconomic variables

across the three scenarios.18 Strikingly, both types of active macro-prudential policy are associated

with higher trend (mean) real GDP growth, lower growth volatility, and lower unwelcome skew-

ness and kurtosis. Both types of active policy are thus associated with clear welfare gains, using

any sensible evaluation criterion that values growth and penalizes downside risk.19

The clear beneficial impact on GDP can be traced back to lower financial stress: the CISS’s

mean shifts down, indicating looser financial conditions on average, and the CISS’s volatility de-

creases along with its positive skewness and kurtosis. Interestingly, managing the financial cycle

also reduced inflation volatility, along with its positive skewness and (mild) kurtosis. This, in turn,

allows short-term (monetary policy) interest rates to be less volatile.

We conclude that an active macro-prudential policy regime can, in our experiments, consid-

erably improve macroeconomic outcomes by increasing economic growth while decreasing its

volatility, negative skewness, and excess kurtosis. This is achieved by decreasing the probability

of observing periods of high financial stress.

18Web Appendix G.1’s Figure G.10 reports posterior densities of the first three unconditional moments.
19We can approximate the welfare gain by applying an unconditional version of the objective function (6), that is,

using the unconditional mean growth rate and unconditional growth shortfall as arguments. If the policy maker cares
twice as much about mean growth than expected growth shortfall, i.e. λp = 1.5, then leaning against the financial
cycle leads to utility gains between 3% and 6%.
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5.5 Macro-prudential policy stance

While counterfactual experiments, such as those of Section 5.4, can encourage the use of macro-

prudential instruments, policymakers tasked with policy implementation need to be forward-looking

and condition their actions on available data. An active debate in policy circles revolves around

the question of how to measure the macro-prudential policy stance. In other words, should macro-

prudential policy be tightened or loosened today conditional on currently available information?

We use the decision framework in Section 2.2 to address this question.

We assume that macro-prudential instruments are available and can be used to influence the

financial cycle, and ask when it is beneficial to do so. The thought experiment of this section is

the following: How does the macro-prudential policymaker’s objective function value (7) change

if the financial cycle is marginally lowered now, to be increased later on? If the change is positive,

we conclude that the macro-prudential stance is too loose (as it would benefit from a lower, less

buoyant financial cycle). If, on the other hand, the answer is negative, then macro-prudential policy

is too tight.

We distinguish between a passive and an active policy scenario. The passive policy scenario

consists of a time-t conditional forecast of the economy. The active policy scenario entails reducing

the financial cycle in quarter h = 1 by a certain amount, and raising it again in quarter H/2 + 1

by the same amount when the economy is closer to its unconditional distribution. The financial

cycle is shocked by one half standard deviation of the residuals in the SQVAR’s financial cycle

equation at the median. This amount is approximately equal to the impact of an average capital-

based macro-prudential intervention on credit growth and house prices in the empirical study by

Ampudia et al. (2021, Sec. 4.1), and is thus of an empirically-relevant and interpretable magnitude.

Each policy scenario is evaluated in welfare terms using the objective function (7). At any time

t, future economic growth rates and growth shortfalls are estimated from 50,000 simulations of po-

tential future values of yt+h. To obtain credible intervals, each forward simulation is repeated 200

times, each time using a new draw from the parameters’ posterior density. To fully operationalize

(6), we choose H = 16 quarters, no discounting of the near future (δ = 1 for h = 1, . . . , 16
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Figure 3: Macro-prudential policy stance

The time-t benefit ∆̂ut = [ût (active)− ût (passive)] from marginally lowering the financial cycle now to increase

it later on (active policy) vis-à-vis a time-t conditional unrestricted forecast (passive policy). If ∆ut > 0, then the

economy would benefit from a lower financial cycle and the macro-prudential policy stance is too loose. If ∆ut < 0,

then the policy stance is too tight. Credible bands and posterior mean estimates are based on 200 draws from the

posterior distribution and 2 × 50, 000 simulations of all conditional (on time-t information) distributions per draw

from the posterior. Parameters are chosen as τ = 0, δ = 1 for h = 1, . . . , 16 and δ = 0 thereafter, and λp ∈ {1.5, 3};

see the main text for details. Credible intervals for the λp = 3-case are reported at a 68% and 95% confidence

level. Parameter estimates are kept unchanged over time at their full sample (1990Q1 to 2022Q4) posterior estimates.

Gray-shaded areas indicate CEPR-dated euro area recessions.

and δ = 0 thereafter), the penalty parameter λp ∈ {1.5, 3}, and τ = 0. The choice λp = 1.5

implies that the policymaker cares twice as much about future trend growth than she cares about

reducing downside risk. The choice λp = 3 implies that the policymaker cares twice as much

about reducing downside risk than about fostering future growth. We evaluate the policymaker’s

utility function twice, once for the active scenario and once for the passive scenario, and study the

difference between the two values at any time t.

Figure 3 presents the objective function difference ∆ut associated with adopting the active

macro-prudential policy along with 68% and 95% credible intervals. We observe that adopting the

active policy is not equally beneficial at all times. The benefits from leaning against the financial
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Table 2: Macro-prudential stance and the macroeconomy
Least squares estimates of the posterior mean of 100 ×∆ut (i.e., 100× the solid blue line in Figure 3) on the macro
variables (x′

t, z
′
t)

′ from the SQVAR model. The t-statistics are based on Newey-West HAC standard errors. The
regression constant is not reported. Estimation sample: 1991Q1 to 2022Q4, N = 128.

Variable val t-stat Variable val t-stat
Fin. cyclet 2.17 7.66 CISSt -5.13 -10.56
3mOISt -0.16 -8.07 HICP inflationt -0.19 -5.00
RGDP growtht 0.06 2.65 Commodity idxt 0.00 0.82
R2 0.80

cycle are maximal during the late 1990s, before the bust of the dot-com boom in 2000, and during

the mid-2000s before the onset of the GFC in 2007. These findings are intuitive, as the financial

system was particularly sanguine during these times, arguably seeding the respective busts later on

(e.g., Boissay et al., 2016).

The benefits from leaning against the financial cycle are estimated to be negative during the

early 1990s, following the end of the dot-com boom in early 2000, during the GFC in 2008, and

during the euro area sovereign debt crisis in 2011–2012. This is again intuitive, as the financial

system was already deleveraging during these times, and requiring more would add insult to injury.

Importantly, Figure 3 can suggest an approximate rule-of-thumb to set the Basel-III counter-

cyclical capital buffer in practice: increase the buffer by 0.25 percentage points every year, within

the given regulatory range between zero and 2.5%, except when it’s obvious that the economy is

in, or about to enter, a contraction. In this way, the buffer can be brought from zero to full 2.5%

capacity in about ten years of expansion, to lean against exuberance during the expansion and

increase the loss absorbing capacity of the financial system once a financial crisis materializes.

We conclude this section by studying the circumstances under which macro-prudential inter-

ventions are most likely to be beneficial. To address this question we relate our estimate of macro-

prudential stance, ∆̂ut = ût (active) − ût (passive), to the current macro-financial environment

(x′
t, z

′
t)

′. Table 2 reports the respective least squares regression parameter estimates. We used

λp = 3 to obtain the left hand-side variable, but obtain similar results for λp = 1.5.
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We highlight five findings. First, a tighter macro-prudential policy stance is called for when the

financial cycle takes high values. This is intuitive and in line with the purpose of the indicator; see

Lang et al. (2019). Second, low short-term interest rates (3mOIS) are associated with benefits from

macro-prudential tightening. This is in line with studies explaining how low-for-long monetary

policy interest rates can encourage a “reach-for-yield” behavior and low lending standards; see

e.g. Rajan (2006) and Dell’Ariccia et al. (2014). Low short-term interest rates require low and

stable inflation to materialize. Third, macro-prudential tightening is relatively more beneficial in

an economic expansion (or boom) than a contraction. This is again intuitive and in line with e.g.

Boissay et al. (2016), where an economic boom seeds optimism and increases the probability of

a bust later on. Fourth, tightening macro-prudential policy tends to be beneficial when financial

stress (CISS) is low. This is in line with an important literature on the “financial stability-” or

“volatility paradox,” according to which the financial system can look strongest precisely when

it is most vulnerable; see e.g. Brunnermeier and Sannikov (2014) and Mendicino et al. (2025).

In these models, what looks ostensibly like low risk is, in fact, a sign of aggressive risk taking.

Finally, global commodity prices do not appear to be important for explaining variation in ∆̂ut.

6 Conclusion

We formalized the macro-prudential policymaker’s decision problem under uncertainty and stud-

ied it for the euro area. Flexible and potentially asymmetric predictive distributions are obtained

from a novel Bayesian structural quantile vector autoregressive model that allows us to study the

nonlinear relationship between economic growth and various other factors such as financial stress,

the financial cycle, short-term interest rates, and inflation. We documented substantial asymmetries

in the predictive distribution of real GDP growth and the responses of macroeconomic variables

to, for example, financial shocks. Considering counterfactual scenarios allowed us to study the

potential of macro-prudential policy, quantify the macro-prudential policy stance, and study when

macro-prudential interventions are likely to be beneficial.
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This paper entails several possible routes for future research. First, to our knowledge, method-

ological work on shock identification in multivariate quantile models, e.g. through instrumental

variables or sign restrictions, is currently an open field (but see Schüler (2020), Chavleishvili

and Manganelli (2024), and Iacopini et al. (2023)). Second, panel-SQVAR approaches could be

considered, possibly incorporating hierarchical specifications of random coefficients as in, e.g.,

Jarocinski (2010). Finally, the relative forecasting performance of recent macro-at-risk models,

and combinations thereof, is only now starting to be comprehensively assessed (Surprenant, 2025).
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