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1 Introduction

For reliable inference on extreme tail behavior, Extreme Value Theory (EVT) is statistics’

favorite approach. It allows the researcher to infer the distribution’s extreme tail scale, shape,

quantiles, and expected shortfall levels by focusing only on the tail area and abstracting from

the density’s center; see, for example, Balkema and de Haan (1974), Pickands (1975), Hill

(1975), and Davidson and Smith (1990) for early key contributions, Embrechts et al. (1997),

Coles (2001), de Haan and Ferreira (2006), and McNeil et al. (2010, Ch. 7) for textbook

treatments, and Rocco (2014) for a survey. The key insights of EVT have by now been

extended from the i.i.d. cross-sectional setting to time series applications; see, for example,

Chavez-Demoulin et al. (2005), Chavez-Demoulin and Embrechts (2010), Einmahl et al.

(2016), Hoga (2017), Massacci (2017), de Haan and Zhou (2021), and D’Innocenzo et al.

(2024). This is particularly useful if EVT is applied for risk and capital buffer determination

in finance and economics, for instance, for the calculation of a predictive density’s 99.5%

Value-at-Risk (VaR) or Expected Shortfall (ES). Such measures may change rapidly under

changing market circumstances and distress.

This paper concentrates on modeling the time variation in the extreme tails of conditional

loss distributions. Thus far, models for the dynamics of extreme tail behavior have had to deal

with at least three major challenges: First, time variation in tail behavior requires dynamic

models for the tail’s starting point, its shape, and its scale, all of which are important

ingredients for the computation of high distribution quantiles. A joint dynamic model for all

these three ingredients quickly becomes quite complex, however, and one would benefit from

an approach that reduces the number of time-varying parameters to be modeled. Second,

a model for the dynamics of extreme tail behavior should ideally only concentrate on the

distribution’s tail area and avoid making assumptions about the behavior of the center of

the distribution. Finally, empirical estimates of continuously changing tail shapes typically

indicate that such time variation is a highly persistent phenomenon (see, e.g., Massacci, 2017;
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de Haan and Zhou, 2021; D’Innocenzo et al., 2024) with autoregressive dynamics that often

have (near) ‘unit root’ like behavior. This finding seems at odds with the typical stationarity

or mean-reverting assumptions made in the same papers. Thus far, a theory for so-called

‘integrated’ models for tail risk dynamics seems to be lacking. Though results are available

for integrated volatility models (such as iGARCH, see e.g. Li et al., 2018 and Francq and

Zakoïan, 2019) and particular location models (Blasques et al., 2024), no results are available

for the behavior of integrated models for shape parameters. In such a challenging setting, it is

natural to ask: can time variation in a time series’ extreme tail still be estimated consistently?

Can VaR and ES at high confidence levels be inferred simply and reliably in- and out-of-

sample? And does standard likelihood inference still apply or is it affected if tail shape

dynamics are highly persistent, i.e., integrated? Despite its practical relevance for fields such

as financial economics and actuarial sciences as well as its theoretical importance, a tractable,

comprehensive framework to address such first-order questions is currently missing.

It is here that the current paper makes its main contribution. We propose a novel robust,

semi-parametric, and dynamic framework with ‘integrated’ (i.e., persistent) time variation in

tail fatness for long univariate time series. The framework builds on results from the EVT

literature and uses a conditional Generalized Pareto Distribution (GPD) to approximate

the tail beyond a given threshold. The time-varying tail shape in our model is driven by

the score of the GPD density; see Creal et al. (2013) and Harvey (2013). As a result, the

model is observation-driven in the terminology of Cox (1981) and its time-varying parameter

is perfectly predictable one step ahead. In addition, the log-likelihood function is known

in closed form and allows for parameter estimation and inference via standard maximum

likelihood methods. Score-driven dynamics are known to be optimal in the sense of Blasques

et al. (2015).

Our approach is different from previous EVT studies (including D’Innocenzo et al., 2024)

in at least two important ways. First, we do not apply the limiting GPD result from EVT

to the peaks-over-thresholds (POTs), but to scaled POTs, where the scaling is done by the
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threshold value. This stands in sharp contrast to – virtually all – earlier applications that

typically focus on unscaled POTs (see, for example, McNeil et al., 2010, Ch. 7, Christoffersen,

2012, Ch. 6, Andersen et al., 2013, Hoga (2017), and Massacci, 2017). The use of scaled POTs

has been remarkably under-explored in risk management, yet has an important advantage:

the limiting GPD approximation is now characterized by a single shape parameter and no

longer needs both a tail shape and tail scale parameter. The resulting statistical model is

parsimonious and much simpler to study theoretically and empirically.

Second, our model deviates from previous approaches in that we consider an integrated

score-driven filtering equation for the time-varying shape parameter. Empirically, when

studying for instance daily or intra-daily financial data, estimates of the autoregressive pa-

rameter for the tail shape dynamics are often indistinguishably close to unity, implying highly

persistent dynamics (see, e.g., Massacci (2017) and D’Innocenzo et al., 2024). We study the

asymptotic properties of such an integrated model in detail, including stationarity and er-

godicity properties of the model and the filter, and consistency and asymptotic normality

of the model’s static parameters. This extends the work on integrated models for higher-

order moments from the volatility case (for instance, Jensen and Rahbek, 2004; Francq and

Zakoïan, 2012, 2019) to the EVT setting.

To obtain the time-varying thresholds required for scaling, we use the recent approach

of Patton et al. (2019), which elicits VaR and ES simultaneously in a semi-parametric way,

concentrating only on tail observations and not making assumptions about the center of the

distribution. The method is therefore extremely useful for estimating threshold values less far

out in the tails, such as at 90% or 95% confidence levels. The method faces more challenges

for more extreme quantiles. It is here that our dynamic EVT-based GPD approximation

perfectly complements the approach of Patton et al. (2019), as our approach is precisely

geared towards modeling the extreme tail quantiles.

We obtain two theoretical results. First, we show that under mild regularity conditions

the tail shape parameter and the data are asymptotically stationary and ergodic. Moreover,
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we characterize the invertibility region for the tail shape filter. Interestingly, while the tail

shape parameter has integrated dynamics and no finite unconditional mean to revert to,

the ratio of the true and the estimated tail shape parameter is well-behaved, asymptotically

stationary and ergodic, and has a finite unconditional first moment. We also show that the

intercept in the DGP for the time-varying tail shape needs to be strictly positive to rule out

degenerate limiting behavior of the tail shape. Second, we show that the maximum likelihood

estimator for the model’s static parameters is strongly consistent and asymptotically normally

distributed under mild regularity conditions, despite the integrated dynamics. We confirm

the theoretical findings in simulation experiments.

We illustrate the model using two hourly cryptocurrency exchange rates from May 2018

until August 2025, thus including the so-called “second crypto winter” of 2022. We find

that the tail shape parameters vary over time, with the adverse left tail’s shape parameter

ranging between 0.3 and 0.6, implying the existence of between 1 and 3 integer conditional

moments, depending on the period, and thus the presence of extremely fat tails. Tail market

risk estimates responded strongly to the collapse of the Terra/Luna cryptocurrency in May

2022 (see, e.g. Uhlig, 2022), the collapse of the cryptocurrency intermediary FTX in June

2022, and the collapse of the crypto intermediary Celsius in November 2022. An out-of-

sample evaluation exercise, performed for these data and for different combinations of EVT

thresholds’ and risk measures’ tail probabilities, suggests that our new method performs well

in the extreme tails when the thresholds (less far out in the tail) are chosen dynamically by

the method of Patton et al. (2019). In addition, despite only having one parameter, our new

and more parsimonious EVT model behaves at par and sometimes better in the extreme tail

than the two time-varying parameter model of D’Innocenzo et al. (2024) and is also easier to

estimate.

The four papers closest to ours are Massacci (2017), Patton et al. (2019), de Haan and

Zhou (2021), and D’Innocenzo et al. (2024). de Haan and Zhou (2021) propose a fully

non-parametric approach to estimating a continuously-changing extreme value index locally
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from independent but non-identically distributed POTs. Our paper is different in that we

adopt a semi-parametric perspective, using a parametrized, integrated filtering recursion to

recover persistent time variation in the tail’s shape. Massacci (2017) and D’Innocenzo et al.

(2024) both study score-driven approaches to filtering the extreme tail’s scale and shape.

Our paper is different in two important ways, in that we propose a particularly parsimonious

statistical model (featuring only a single time-varying parameter), and focus on the case of

integrated time variation in the tail. Finally, unlike Patton et al. (2019), our tail VaR and

ES dynamics explicitly account for fat tail shape beyond a threshold as emerging from EVT.

Our score-driven dynamics contains weights for extreme observations, which are absent in

the elicitable score functions of Patton et al. (2019). The resulting dynamics in our model are

more robust, particularly for the ES. Formulated differently, our approach and that of Patton

et al. (2019) complement each other. Whereas Patton et al. (2019) provide an appropriate

semi-parametric framework to estimate time-varying thresholds less far out in the tails, our

approach enables the identification of time variation in risk measures in the extreme tails

beyond these thresholds.

Section 2 presents the statistical model. Section 3 discusses the asymptotic properties

of the model and of the maximum likelihood estimator. Section 4 studies the model’s per-

formance in simulation experiments. Section 5 applies the model to two cryptocurrency

exchange rate returns. Section 6 concludes. Proofs and additional results are provided in a

web appendix.

2 Statistical model

2.1 A scaled conditional EVT framework

Consider a random variable Xt, such as asset price losses or negative returns, for t = 1, . . . , T ,

where T denotes the number of observations of Xt. We are interested in describing the
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conditional extreme right tail behavior of Xt. We do this by adopting an Extreme Value

Theory (EVT) perspective. This allows us to only concentrate on the conditional tail behavior

of Xt, leaving any changes in the center of the distribution unmodeled as these are not relevant

for our prime objective: estimating the extreme conditional quantiles of Xt. For our main

result, we formulate a conditional version of the Pickands-Balkema-de Haan Peaks-Over-

Threshold (POT) theorem. This theorem describes the behavior of Xt in the far-out tail

area, i.e., for values of Xt above some high (possibly time-varying) threshold τt. Following

Theorem 1.2.5 of de Haan and Ferreira (2006), the conditional extremal behavior of a random

variable Xt that lies in the domain of attraction of a (heavy-tailed) Fréchet law with tail shape

f̃t > 0, can be described by

lim
τt→∞

P
(
Xt > τt + τt f̃t xt | Xt > τt, F̃t−1

)
=
(
1 + f̃t xt

)−1/f̃t
,

for xt > 0, f̃t ∈ F̃t−1, and F̃t−1 = {X1, . . . , Xt−1} denoting the conditioning set. We refer

to the reciprocal of the tail shape, 1/f̃t, as the tail index. Distributions that satisfy this

condition comprise most fat-tailed distributions used in economics and finance, such as the

Student’s t distribution, the (generalized) Pareto distribution, the log-gamma distribution,

the F distribution, and many more (for further discussion, see e.g. Johnson et al., 1994,

Embrechts et al., 1997, and McNeil et al., 2010, Ch. 7.3.)

Let ti for i = 1, . . . , nT , denote the time indices at which we observe a POT, i.e., Xti >

τti , where nT < T denotes the number of POTs. We now define the scaled POTs Yi as

Yi =
(
Xti − τti

)
/τti ⇔ Xti = τti + τti Yi. Substituting Yi into the above limiting result and

defining fi = f̃ti , and yi = f̃tixti , we obtain for yi > 0 that

lim
τti→∞

P
(
Yi > yi | F̃ti−1

)
= lim

τti→∞
P
(
Yi > yi | Yi > 0, F̃ti−1

)
= lim

τti→∞
P
(
τti + τti Yi > τti + τti yi | τti + τti Yi > τti , F̃ti−1

)
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= lim
τti→∞

P
(
Xti > τti + τti yi | Xti > τti , F̃ti−1

)
= (1 + yi)

−1/fi , (1)

which yields the generalized Pareto distribution (GPD) as a limiting approximation for the

conditional distribution P(Yi > yi | F̃ti−1) of the extreme tail of the scaled POTs Yi.

The advantage of using scaled POTs Yi = (Xti − τti)/τti rather than their unscaled

counterparts (Xti − τti) is that it considerably simplifies the resulting expression for the

distribution function in (1) for the extreme tails compared to, for example, Massacci (2017)

or D’Innocenzo et al. (2024). In particular, the expression in (1) is characterized by only

one time-varying conditional tail shape parameter fi, rather than by both a tail shape and

tail scale parameter as in earlier papers. This simplification proves particularly helpful when

later deriving the asymptotic properties of the model and the maximum likelihood estimator.

Empirically, the result requires that we look sufficiently far into the tail, as the result builds

on the limiting result of de Haan and Ferreira (2006), which states that the tail scale can be

written as f̃tτt for sufficiently large τt.

2.2 Filtering the conditional tail shape parameter

We allow the tail shape to change gradually over time. In particular, we assume that f̃t

possibly changes each time a POT materializes: f̃t = fi if t = ti, and f̃t = f̃t−1 otherwise. It

is then, and only then, that we obtain information about the tail shape behavior of Yi and thus

Xti . In all other cases, we only obtain information about the center of the distribution of Xt,

which is irrelevant for the time variation in the extreme quantiles. We make the simplifying

assumption P (Yi > yi | F̃ti−1) = P (Yi > yi | Fi−1) with Fi−1 = F̃ti−1
, i.e., the conditional

distribution of the extremes is not affected by intermediate, non-extreme observations Xt

for t = ti−1 + 1, . . . , ti − 1. We can then introduce score-driven dynamics for fi as in Creal

et al. (2013), with fi+1 = ω + βfi + αsi, for i ∈ Z, where si is the inverse information scaled

derivative of the log predictive GPD tail density. Transforming the cdf expression in (1)
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into a conditional pdf p(yi | Fi−1) = f−1
i (1 + yi)

−f−1
i −1 for yi > 0, we obtain the following

expression for the scaled score,

∇i =
∂
(
− ln(fi)−

(
f−1
i + 1

)
ln (1 + yi)

)
∂fi

=
1

f 2
i

ln (1 + yi)−
1

fi
,

Ii−1 = E
[
∇2

i

∣∣ Fi−1

]
= f−2

i , si = I−1
i−1 ∇i = ln(1 + yi)− fi.

In this paper, we are particularly interested in filtering the tail shape parameter fi from the

data using an integrated (β = 1) score-driven filtering equation,

fi+1 = ω + β fi + α si = ω + fi + α si = ω + (1− α) fi + α ln(1 + yi), (2)

for i ∈ Z, i.e., a model where we have set β equal to unity rather than to a value inside the

unit interval as is commonly done in the literature. The last equation highlights this further

by spelling out the scaled score si = ln(1 + yi) − fi and rewriting the expression such that

the coefficients 1 − α and α in front of fi and ln(1 + yi), respectively, add up to 1 as in

the iGARCH literature (see, e.g., Francq and Zakoïan, 2019). Note that if fi0 > 0 for some

i0 ∈ Z, and ω > 0 and 0 < α < 1, then fi is non-negative for all i ≥ i0.

We use the terminology integrated score-driven model similarly as in the integrated

GARCH (iGARCH) literature. Whereas iGARCH models have been well-studied (see, e.g.,

Francq and Zakoïan, 2019, and references therein), integrated score-driven models have thus

far hardly received any attention. This is remarkable given the fact that empirical estimates

of β for score-driven models are often quite close to unity. In a recent paper, Blasques et al.

(2024) study an integrated score-driven filter in the particular setting of a time-varying lo-

cation model for a mixture of two normals. Properties of integrated score-driven models

for time-varying parameters beyond the location-scale setting, however, are to the best of

our knowledge absent from the current literature. Integrated tail shape dynamics and thus

a slowly time-varying tail shape fi make perfect empirical sense, however, particularly for
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longer time spans of highly frequent data such as daily or intra-daily data.

The presence of an intercept ω in (2) when fi has a unit autoregressive coefficient may

seem strange at first sight. It is not always standard (see, for example, the ZD-GARCH

models studied in Li et al., 2018), but has been shown to be important before in a time-

varying volatility setting (see e.g. Francq and Zakoïan, 2012, 2019). We show in Section 3

that a non-zero intercept ω > 0 is crucial if one wishes to interpret the score-driven tail

shape model as a data generating process: without it, convergence of fi to its stationary and

ergodic limit always results in degenerate, thin-tailed tail behavior with fi = 0 for all i ∈ Z.

Given the observation-driven nature of the filtering equation (2), an explicit expression

is available for the likelihood function. Estimates of the model’s static parameters can then

be obtained by standard maximum likelihood methods. We gather all the model’s static

parameters in a parameter vector θ = (ω, α) and write down the likelihood function and the

maximum likelihood estimator (MLE) θ̂nT
for the POTs only,

θ̂nT
= argmax

θ∈Θ
L̂nT

(θ), L̂nT
(θ) =

1

nT

nT∑
i=1

ℓ̂i(θ), (3)

ℓ̂i(θ) = − ln f̂i(θ)−

(
1 +

1

f̂i(θ)

)
ln(1 + yi),

where we use the slightly more precise notation f̂i(θ) to denote the filtered outcomes as a

function of the static parameters,

f̂i+1(θ) = ω + f̂i(θ) + α
(
ln(1 + yi)− f̂i(θ)

)
, (4)

evaluated at some θ inside the parameter space Θ and initialized at some f̂1 > 0.
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2.3 Filtering extreme Value-at-Risk and Expected Shortfall

Evaluated at their maximum likelihood estimates, the filtered values ˆ̃ft(θ̂nT
) can be used to

compute familiar risk quantities like extreme tail VaR or extreme tail ES using the GPD

approximation; see, for instance, McNeil and Frey (2000), McNeil et al. (2010) and Rocco

(2014). Let κ denote the right-tail probability used to define the right-tail threshold τt, i.e.,

P(Xt > τt | F̃t−1) = κ. Then we can estimate the conditional VaR and ES at a more extreme

right-tail probability level γ < κ by

VaR1−γ(Xt | F̃t−1) = τt ·
(
γ

ζt

)− ˆ̃
ft(θ̂nT

)

, (5)

ES1−γ(Xt | F̃t−1) =
VaR1−γ(Xt | F̃t−1)

1− ˆ̃ft(θ̂nT
)

, (6)

where t = 1, . . . , T and where ζt is an estimator of the tail probability P(Xt > τt | F̃t−1),

e.g., the percentage of POT observations up to time t. Alternatively, one can replace ζt

directly by the postulated nominal POT probability κ. The expressions (5) and (6) differ

from those in, for instance, McNeil et al. (2010) and D’Innocenzo et al. (2024) owing to the

use of scaled POTs Yi = (Xti − τti)/τti rather than their unscaled counterparts (Xti − τti); see

Web Appendix C for derivations. In particular, our expressions only require the estimation

of the tail shape parameter ˆ̃ft(θ̂nT
), and not of any auxiliary tail scale. Due to the result

of de Haan and Ferreira (2006), the expressions coincide again if one uses ˆ̃ft(θ̂nT
)τt as a tail

scale parameter in the former papers.

Given the straightforward formulation of the filter for fi(θ) in (4), (5)–(6) directly yield

our desired filtered extreme risk measures. These filtered VaR and ES estimates differ in

an important way from those in Patton et al. (2019). Whereas the approach of Patton

et al. (2019) is very useful for less extreme quantiles, the current EVT-based filtering model

with integrated dynamics has important advantages for capturing time variation farther out

in the tail. A major advantage of the elicitation function used by Patton et al. (2019)
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for characterizing the tail quantile and expected shortfall is that it does not hinge on any

(possibly incorrect) distributional assumptions. At the same time, the approach comes with

a similar limitation for risk assessment as historical simulation has compared to EVT-based

methods: historical simulation cannot capture the extreme tail shape beyond the highest

realization; see, for instance, McNeil et al. (2010). A similar risk exists for the time variation

in VaR and ES using Patton et al. (2019) at extreme quantiles: there, only few POTs are

available (if any at all), resulting in only few changes in the dynamic VaR and ES estimates

using their approach.

We still consider the methodology of Patton et al. (2019), or one similar to it, as key

to our analysis, but mainly for the determination of the (less extreme) thresholds τt; see

Sections 4 and 5. Its advantages are (i) its reliance on very few distributional assumptions,

and (ii) its use of much higher exceedance probabilities (10% or 5%) and thus the occurrence

of a sizable number of POTs to capture the time variation in the thresholds τt. Beyond

these ‘less extreme’ thresholds τt, however, we exploit the shape of the EVT-based GPD

to go much deeper into the tail. The latter has two advantages. First, we lean on the

theoretical insight that the POTs of fat-tailed distributions (i.e., that lie in the domain of

attraction of a Fréchet law) are themselves fat-tailed. Using the score-driven dynamics in

(4), this information is directly exploited when filtering the tail shape values from the data,

resulting in a milder impact of extreme exceedances on the tail shape. Second, we can use

all the observed POTs at these less extreme exceedance levels for filtering the time-varying

tail shape and thus the extreme ES. As a result, our filtered extreme ES values based on the

GPD EVT approximation may vary much more smoothly over time compared to when they

would have been estimated directly using Patton et al. (2019).

Both features are illustrated in Figure 1 using a small simulation experiment for a high

99.9% confidence level. We simulate a large sample of T = 100, 000 observations from a

standard Student’s t distribution with an inverse degrees of freedom that follows a sinusoidal

pattern between ν = 3 and ν = 15, and a matching time-varying scale such that the (non-
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Figure 1: EVT-based versus PZC filtering results at 99.9%
Panels (a), (b), (d): Time series plots of the 99.9% ES and VaR for the PZC method of Patton
et al. (2019) and the EVT-based methodology proposed in this section. The thresholds τt for the
EVT approach are here based on Patton et al. (2019), but using the 5% tail. The results for the
EVT approach (τ , VaR, and ES) are made negative to make them comparable to the PZC results.
Data are simulated from a unit scale Student’s t distribution with time-varying inverse degrees
of freedom ν−1

t that moves sinusoidal between 0.067 (ν = 15) and 0.4 (ν = 2.5) and a 5% VaR
that moves in a triangular way from -3 up to -1 and down to -3 again. Panel (a) shows the results
for the full sample of T = 100, 000 observations; panels (b) and (d) zoom in on a data segment
to better visualize the patterns. Panel (c) plots the news impact curve associated with each method.

(a) ES dynamics: full sample (b) ES dynamics: zoomed in

(c) NIC of ES (d) VaR dynamics: zoomed in

extreme) true 5% VaR has a different pattern over time, non-synchronous with the sinusoidal

pattern for ν. Panel (a) provides the true ES, the ES as estimated using Patton et al. (2019)

and labeled PZC from now on, and the ES using the EVT-based methodology proposed in

this paper. The EVT approach here bases its 5% tail area thresholds τt on Patton et al.

(2019). Note that we cast our EVT-based VaR and ES to the negative outcome space to

make them comparable to those of Patton et al. As expected, the dynamics of the EVT-based

approach follow the true ES dynamics much more closely in terms of the up and downward

movements. For the extreme 99.9% quantiles, there are simply too few POTs to induce
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sufficient time variation in the original approach of Patton et al. (2019). This causes that

approach to exhibit large jumps followed by quick reversals to an ‘equilibrium level’ closer to

zero. This is even clearer if we focus on a shorter interval (Panel (b)): the PZC curve only

jumps occasionally, as expected, and then geometrically converges to its upper bound. By

contrast, the EVT-based curve behaves much more smoothly, and follows the true extreme

ES more closely by extrapolating the behavior of the 5% tail observations into the extreme

0.1% tail area. The pattern for the VaR is very similar (Panel (d)).

Figure 1’s Panel (c) reports the News Impact Curve (NIC) associated with each method

by plotting the reaction of the 99.9% ES to an observation −Xt for a 99.9% VaR level of

10.0 and an EVT 5% tail area threshold level of 2.5. The robustness feature of the new

EVT-based approach is readily apparent. The NIC for the VaR (not shown) looks very

similar. The parameters used for the NIC are the ones estimated for the simulated data, and

the curves are shifted vertically to both start in the origin. The NIC of PZC for extreme

quantiles is flat until the (extreme) 99.9% VaR is exceeded. Only upon an exceedance of the

extreme VaR, the ES reacts linearly and quite steeply to data. This results in the sharp peaks

down and subsequent exponential reversals seen in Figure 1’s Panels (b) and (d). The EVT

approach is based on the less extreme 5% quantiles of PZC. Therefore, the EVT approach’s

extreme ES reacts much earlier to data, namely to the POTs exceeding the less extreme τt.

It also reacts in a milder, concave way. The concave reaction follows from the core of the

EVT’s NIC expression, which reduces to C · |Xt|c for c = α log(κ/γ) and for some C that

does not depend on Xt; see Web Appendix A for a derivation. As long as c < 1, the EVT

approach reacts to extreme POTs in a concave, robust way to the data: it acknowledges that

outliers may occur deep into the tail area if f̃t is high. As a result, f̃t reacts less strongly to

such outliers, resulting in a more stable pattern for extreme VaR and ES (Panels (a), (b),

and (d)). For typical empirical estimates (Section 5), α is estimated at a low value, such that

the inequality c < 1 is easily satisfied and the robustness of the EVT approach is achieved.
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3 Asymptotic behavior

This section studies the asymptotic properties of the model (1) and (4). We first derive

conditions for stationarity and ergodicity of the model and the model-implied filter. These

can then be used to establish the consistency and asymptotic normality of the maximum

likelihood estimator for the model’s static parameters. In our asymptotic framework, we

take the thresholds τt as given and let nT , the number of POTs, diverge to infinity. For a

recent framework where the number of observations T tends to infinity and nT is treated

as random, see Cavaliere et al. (2025). Sections 4 and 5 discuss how we estimate τt in our

simulations and empirical applications.

We first define two random variables, namely a standard uniform ui ∼ U(0, 1), and a

standard unit exponential ϵi = − ln(1 − ui) ∼ Exp(1). Define G(yi | fi) = 1 − (1 + yi)
−1/fi

as the expression for the tail GPD approximation from (1). We let fi(θ0) denote the true

time-varying tail shape parameter in the DGP as characterized by the true static parameter

vector θ0. We show later that fi(θ0) is the unique stationary and ergodic limit of its initialized

counterpart f̂i(θ0) from (4), initialized at f̂1.

Using these definitions, we obtain

G(yi | fi(θ0)) = ui = 1− (1 + yi)
−1/fi(θ0) ⇐⇒ 1

fi(θ0)
ln(1 + yi) = − ln(1− ui) = ϵi, (7)

and thus

fi+1(θ0) = ω0 + fi(θ0) + α0

(
ln(1 + yi)− fi(θ0)

)
= ω0 +

(
1 + α0 (ϵi − 1)

)
fi(θ0), (8)

for i ∈ Z. We make the following assumptions.

Assumption 1. {ϵi}i∈Z is an independent and identically distributed (IID) noise sequence

where each ϵi has a unit exponential distribution.
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Assumption 2. The parameter space satisfies Θ = {θ | 0 < ω ≤ ω ≤ ω̄ < ∞, 0 < α ≤ α ≤

ᾱ < 1}, and the true value θ0 ∈ int(Θ).

Both assumptions are mild and quite standard. Assumption 1 postulates that we can

generate the non-linear time series dynamics for the tail shape model by feeding an IID noise

process to the inverse cdf of the GPD to obtain realizations of yi. These realizations then

feed into the next tail shape parameter via the recursion (8). Assumption 2 is standard

and establishes that the parameter space is compact and that the true parameter lies in

its interior. Again, the restrictions on the parameter space are unsurprising: ω > 0 and

0 < α < 1 jointly ensure that the tail shape parameter remains non-negative for all values

of i. We now obtain the following theorem, which establishes (i) stationarity and ergodicity

of the data yi and of the uninitialized true time-varying parameter fi(θ0); (ii) invertibility of

the filter f̂i(θ) started at f̂1 and evaluated at a generic value θ ∈ Θ; and (iii) the existence of

appropriate moments to establish the consistency of the maximum likelihood estimator later

on. All proofs are found in Web Appendices A and B.

Theorem 1. Under Assumptions 1–2:

(i) the model is stationary and ergodic, i.e., there exists a unique stationary and ergodic

solution fi(θ0) and yi to (7) and (8); moreover, there exists some small r > 0 such that

E|fi(θ0)|r < ∞ and E
∣∣ln(1 + yi)

∣∣r < ∞;

(ii) if E ln+ ln(1+yi) < ∞, then the model-implied filter is invertible, i.e., f̂i(θ) as generated

by (4) and initialized at f̂1 converges to a unique stationary and ergodic solution fi(θ)

uniformly over Θ;

(iii) the ratio process ẑfi (θ) = fi(θ0)/f̂i(θ) converges to a unique stationary and ergodic

solution zfi (θ) = fi(θ0)/fi(θ). Moreover, zfi (θ) and 1/zfi (θ) have finite k-th order

moment, uniformly over Θ, for any k > 0.
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Given the model’s structure, the two simple Assumptions 1 and 2 suffice to obtain sta-

tionarity and ergodicity of the time-varying tail shape in the DGP. Interestingly, the result

also gives rise to the following corollary.

Corollary 2. Under Assumptions 1 and 2:

(i) if ω0 = 0, the stationary and ergodic solution for fi(θ0) satisfies fi(θ0) = 0 for all i;

(ii) for ω0 > 0, the stationary solution for fi(θ0) does not have a finite first moment.

The non-zero intercept ω0 in the DGP is thus needed to obtain a non-degenerate limiting

behavior of fi(θ0). The intuition for this is immediately clear from the recursion (8), which

is a contracting autoregression of order one with a random coefficient. Following Bougerol

(1993), Theorem 1 establishes that it has a stationary and ergodic solution. Filling out

fi(θ0) = 0, we can see that this obviously is a candidate solution in case ω0 = 0. The

corollary then follows immediately from the uniqueness of the stationary and ergodic limit,

as shown by Straumann and Mikosch (2006). By taking unconditional expectations of the

left and middle part of (8) for ω0 > 0, and using the fact that the scaled score has conditional

expectation zero, we have E[fi+1(θ0)] = ω0+E[fi(θ0)]. It then also follows directly that fi(θ0)

cannot have a finite mean if ω0 > 0.

The second part of Theorem 1 establishes the invertibility of the filter under a log+-log-

moment condition, which is very weak. As the first part of the theorem already established

that the data generated by the model is stationary and ergodic and that ln(1 + yi) has a

small moment r, the filter is invertible at the DGP. Invertibility, however, holds for generic

stationary and ergodic yi with a log+-log-moment, meaning that it continues to hold if the

model is misspecified. Also note that f̂i(θ) does not have a finite first unconditional moment

at the DGP, as it is driven by the innovation α ln(1 + yi) = αfi(θ0)ϵi, where ϵi has a unit

exponential distribution. The first part of the theorem already implied that fi(θ0) does not

have a first moment.
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Finally, the third part of Theorem 1 considers the scaled process ẑfi (θ) = fi(θ0)/f̂i(θ).

This process has finite moments and inverse moments of arbitrary large order, even though

fi(θ) and f̂i(θ) do not, neither at θ0 nor at θ ∈ Θ\θ0. The interest in the process ẑfi (θ) stems

from considering the centralized log-likelihood function under correct specification,

Q̂nT
(θ) = L̂nT

(θ)− LnT
(θ0) =

nT∑
i=1

Q̂i(θ)

=

nT∑
i=1

− ln f̂i(θ)− (1 + f̂i(θ)
−1) ln(1 + yi) + ln fi(θ0) + (1 + fi(θ0)

−1) ln(1 + yi)

=

nT∑
i=1

ln
fi(θ0)

f̂i(θ)
− fi(θ0)

f̂i(θ)
ϵi + ϵi =

nT∑
i=1

ln ẑfi (θ) − ϵi

(
ẑfi (θ)− 1

)
. (9)

We also define QnT
(θ) = LnT

(θ)− LnT
(θ0), and define Qi(θ) similar to Q̂i(θ), but with f̂i(θ)

replaced by its stationary and ergodic limit fi(θ). As the maximizer of L̂nT
(θ) is the same as

that of Q̂nT
(θ), the properties of ẑfi (θ) can be used to derive the properties of the MLE. In

particular, (9) clarifies that consistency results can be obtained if a first moment exists for

ẑfi (θ). This is precisely what the last part of Theorem 1 establishes. Though fi(θ0) does not

have a finite first moment for ω0 > 0, the normalized process ẑfi (θ) = fi(θ0)/f̂i(θ) has finite

moments up to arbitrary (positive) order.

We can now establish the following result for the maximum likelihood estimator of the

model’s static parameters using the integrated, score-driven filter.

Theorem 3. Under Assumptions 1–2, the MLE is strongly consistent, θ̂nT

a.s.→ θ0 and asymp-

totically normally distributed with √
nT

(
θ̂nT

− θ0

)
→ N

(
0 , I(θ0)−1

)
for nT → ∞, where

I(θ0) = −E
[
∂2Qi(θ0)/∂θ∂θ

⊤] denotes the non-singular Fisher information matrix.

Theorem 3 allows for an inferential framework for the key filtering parameter α if the

model is correctly specified. Note that the correct specification immediately follows from

the EVT perspective and the limiting result in (1) as long as the original data lie in the

domain of attraction of a Fréchet law. This is much weaker than in usual settings, where the
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assumption of correct specification might be deemed overly restrictive. Still, we can allow

for some form of mis-specification due to for instance the use of finite thresholds τ̂ti in the

following way. The main arguments in the proof of Theorem 3 continue to hold as long

as F (yi) = 1 − (1 + yi)
−1/fi(θ0) = 1 − exp(−ϵi) for some IID {ϵi}i∈Z that is not necessar-

ily unit exponentially distributed as in the correctly specified case, but still has E[ϵi] = 1

and E[ϵ4i ] < ∞. The result of Theorem 3 then needs to be slightly adapted by replacing

the asymptotic covariance matrix I(θ0)−1 by its usual sandwich form I(θ0)−1J (θ0)I(θ0)−1,

where J (θ0) = E
[
(∂Qi(θ0)/∂θ) (∂Qi(θ0)/∂θ)

⊤] denotes the expected outer product of gra-

dients. The simulation Section 4 investigates even more severe forms of mis-specification and

shows that the asymptotic normality approximation with the sandwich covariance matrix

continues to give adequate results for inference in such settings.

4 Simulation study

4.1 Simulation design

This section investigates the performance of our dynamic EVT model in a controlled setting.

We focus on the quality of the estimates of α and ω and the adequacy of the asymptotic normal

approximation. The simulation study involves three settings (three sets of experiments). In

all three settings, we generate draws Xt from a mixture distribution. With probability 1−κ,

we draw from a standard Gaussian GARCH(1,1) with parameters (0.01, 0.07, 0.92)′. The

parameters are chosen close to the values found by estimating a Gaussian GARCH(1,1)

model for empirical exchange rates. With probability κ, we draw a right tail observation as

Xti = τti exp (fiϵi), where τti is the correct quantile from the underlying standard Gaussian

GARCH(1,1) that is used for generating the observations from the center of the distribution,

fi is the tail shape, and ϵi is a standard unit exponential random variable.

In settings 1 and 2, we let the time-varying tail shape be generated by the model from
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Section 2 using ω = 1.5 ·10−5, and α = 0.01 in line with parameters found for the BTC/USD

and ETH/USD exchange rates in the empirical illustrations of Section 5. The difference

between the first two settings is that we use the true thresholds τt in the first setting to filter

the tail parameters, and the estimated thresholds τ̂t based on Patton et al. (2019) in the

second experiment. This allows us to study the effect of the estimation of the thresholds on

the results.

In the third setting, we let the logarithm of the time-varying tail shape parameter be

generated by an autoregressive model of order one, with the following state equation:

log(fi) = −0.01 + 0.99 · log(fi−1) + 0.06 · ηi−1,

where {ηi}i∈Z is an IID noise sequence where each ηi has a standard Gaussian distribution.

The model is thus misspecified, and we investigate whether the model can still reliably track

the true time-varying parameter fi and whether the estimated α̂ still behaves well compared

to the correctly specified setting; see the discussion after Theorem 3. In this setting, our filter

is still invertible, but the estimator of the static parameters only converges to a pseudo-true

value. The latter is chosen such that the misspecified filtered model matches the unknown

DGP as closely as possible (compare Blasques et al., 2015; Beutner et al., 2024).

In all three settings, we consider the performance of the models estimated with and

without the intercept parameter ω. This allows us to investigate the effect of including or

excluding this parameter, which is typically estimated (very) close to zero. Though setting

ω0 6= 0 is important in the DGP in order not to get a degenerate solution, setting ω = 0 in

the filter is less problematic. In fact, the results below show that setting ω = 0 in the filter

may even improve the stability of the estimator. This is in line with the fill-in asymptotics

results in Beutner et al. (2024), who show that fi can still be filtered consistently using a

score-driven filter, even though the filter itself (including the value of ω) is dynamically mis-

specified, in line with similar earlier results for GARCH volatility filters by Nelson and Foster
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(1994, 1995). We consider four different sample sizes: T ∈ {5000, 10000, 25000, 50000} and

κ = 10% observations coming from the tail. Together with the two different specifications

(with and without ω), this yields a total of 3 × 4 × 2 = 24 simulation experiments. Each

experiment is repeated S = 1, 000 times.

4.2 Simulation results

Figure 2 presents the results for the first two sets of experiments. We clearly see that the

sample size matters for the results. If the sample size is too small (κ = 10% of T = 5000),

the parameter α̂ is regularly estimated on the edge of the parameter space, i.e., at zero, if α

and ω are estimated jointly. As the model has integrated dynamics, a non-zero ω combined

with an α of zero results in a trending pattern for the tail shape parameter fi. If the number

of observations is too small, it is apparently difficult for the model to distinguish between a

trending fi and an integrated random fi. The effect is obviously inherited by the t-statistic

of α̂, as seen in the lower panel. As the sample size grows, the additional peak at 0 shrinks

and the distribution of α̂ and of its t-statistic becomes more and more normal.

If ω is fixed at zero in the model (second column of figures compared to the first column),

the results appear very similar to the setting with estimated ω (first column of figures). For

smaller samples, the estimator of α even appears to behave in a more stable way, collapsing

to the edge of the parameter space less often compared to the setting with estimated ω. This

suggests that, for practical purposes, ω may be set to zero (or an arbitrarily small positive

number) during estimation without much of an effect on the estimated α. This is convenient,

as it further simplifies the estimation problem to estimating a single parameter α, akin to

the estimation of the single smoothing parameter in a RiskMetrics model for time-varying

volatility.

Comparing the first versus the third column of graphs, or the second versus the fourth,

we see that the effect of using estimated (τ̂t) rather than true (τt) thresholds only has a mild
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Figure 2: Simulation results for scenarios 1 and 2
Kernel density estimates of the distribution of the MLE for scenarios 1 and 2. In scenario 1, the true
thresholds τt are used, denoted by τt in the subfigure heading. In scenario 2 the estimated thresholds
are used, denoted as τ̂t and based on Patton et al. (2019). We present results for estimated ω̂ as well
as for ω̂ fixed at zero (denoted as ω̂ = 0). The POTs have a GPD distribution with the correctly
specified tail shape dynamics using the model from Section 2. Kernel density estimates are provided
for α̂ and for its t-statistic using S = 1, 000 simulations.

(a) α̂ (ω̂ free, τt) (b) α̂ (ω̂ = 0, τt) (c) α̂ (ω̂ free, τ̂t) (d) α̂ (ω̂ = 0, τ̂t)

(e) tα̂ (ω̂ free, τt) (f) tα̂ (ω̂ = 0, τt) (g) tα̂ (ω̂ free, τ̂t) (h) tα̂ (ω̂ = 0, τ̂t)

effect on the distribution of α̂. For small sample sizes, the effect of α̂ collapsing to the edge

of the parameter space are more severe when the thresholds are estimated. As in the case

of true thresholds τt, however, these degenerate cases disappear quickly as the sample size

increases. If ω̂ is fixed at zero rather than estimated, we again see that the behavior of α̂

is more stable in small samples, without seriously affecting its behavior in large samples.

Again, fixing ω̂ to zero (or some small number) may be preferable from a stability point of

view, particularly if the sample is not overly large.

Figure 3 presents the results for scenario 3 where the dynamics for the tail shape are

fully misspecified in the model compared to the DGP. The results are consistent with the

previous findings. For small sample sizes, the model sometimes has difficulty in finding a

non-zero α̂ if α̂ is estimated jointly with ω̂, though less drastic than in Figure 2. For larger
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Figure 3: Simulation results scenario 3
Top panels show kernel density estimates of the distribution of the MLE for α̂ for scenario 3 (i.e.,
a Gaussian AR(1) for the true log(fi), such that the model’s tail shape dynamics are misspecified),
using estimated thresholds τ̂t. The kernel density estimates are based on S = 1, 000 simulations.
Lower panels show the fit of the filtered f̂i(θ̂) to the true fi(θ0) in a typical simulation run for two
of the sample sizes. Note that the number of POTs is about κ = 10% of the sample size given the
mixture setup of the DGP.

(a) α̂ (ω̂ free, τ̂t) (b) α̂ (ω̂ = 0, τ̂t)

(c) fit of filter (T = 5000) (d) fit of filter (T = 25000)

sample sizes, the problem disappears. The problem is less pronounced if ω̂ is fixed at zero

rather than estimated, similar to scenarios 1 and 2. The bottom panels in Figure 3 give the

fit of the filter to the true time-varying tail shape parameter fi(θ0) and show that the model

fits the true, unobserved process fi(θ0) quite well, despite mis-specification. Note that the

filtered parameter f̂i(θ̂) differs in at least three ways from the true parameter dynamics: it

uses the estimated θ̂, it is initialized, and most importantly, it uses the incorrect score-driven

dynamics for a DGP that is actually a pure autoregression for log(fi(θ0)). Despite this severe

mis-specification, the filter still tracks the salient dynamics of the true fi(θ0). The results are
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similar for the other sample sizes.

The simulation experiments thus lead to two main suggestions. First, the asymptotic

distributional results seem to hold up in finite samples and the filtered tail shape parameter

tracks the true tail shape dynamics quite well, whether the model is correctly specified or

not. Second, fixing ω to zero or some other small number during estimation may simplify

the model and estimation problem even further without visibly affecting the distributional

results for α̂ in large samples, and stabilizing them in small samples, possibly at the cost of

a slight bias.

5 Empirical illustration

5.1 In-sample analysis

We obtain hourly prices for Bitcoin (BTC) and Ether (ETH) in USD from Binfinex via

Cryptodatadownload.com. The series range from May 15, 2018 to August 31, 2025, yielding

63,000+ observations. We remove days for which we do not observe all trading hours and

then transform prices into negative log-returns Xt = −100 × (ln st − ln st−1) to concentrate

on the original series’ left tail, where st is the price of either BTC or ETH in USD. The left

tail is the economically relevant tail for a U.S. investor holding cryptocurrencies. We model

the time-varying thresholds τt using Patton et al. (2019) with tail probability κ, where we

vary κ across 10%, 5%, and 2.5%. We initialize the dynamic tail shape parameter fi by its

static maximum likelihood estimate f̂1 based on the first 50 POTs and estimate θ = (ω, α)′

by the maximum likelihood estimator given in (3).

Table 1 presents the results. The estimates of α are all small and positive.1 The values

increase if we move farther out into the tail by decreasing the tail probability κ that is used to

identify the dynamic thresholds τt. This is not surprising. A larger α indicates that fi reacts
1Note that we cannot simply test whether α is equal to zero as α = 0 is on the boundary of the parameter

space and ω and β are not jointly identified if α = 0; see Assumption 2 and Newey and McFadden (1994).
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Table 1: Parameter estimates
Parameter estimates for the dynamic EVT model. The estimation sample of negative hourly cryptocurrency
log-returns ranges from May 15, 2018 to August 31, 2025. Sandwich standard errors are in parentheses.
Dynamic thresholds τt are estimated using Patton et al. (2019) with a tail probability of κ, resulting in nT

POTs to estimate the dynamic EVT model. The tail probability is chosen as γ = κ/10.

κ = 10% κ = 5% κ = 2.5%

α ω × 104 nT α ω × 104 nT α ω × 104 nT

BTC/USD 0.0034 0.0022 6919 0.0053 0.0007 3462 0.0114 0.0106 1689
(0.0011) (0.0030) (0.0017) (0.0007) (0.0036) (0.0475)

ETH/USD 0.0014 0.0008 6391 0.0077 0.0181 3298 0.0130 0.0776 1648
(0.0288) (0.0225) (0.0033) (0.0446) (0.0050) (0.1158)

more strongly to new information using the score transition equation (2). As for a smaller κ

this information also arrives more sporadically, a stronger reaction is indeed warranted when

such tail information finally comes in. Smaller κs also automatically reduce the number

of POTs (nT ) available to estimate the model’s static parameters α and ω, thus increasing

standard errors. Finally, we note that the estimates of ω are very close to zero, given that

they are multiplied by 104 in Table 1. In fact, setting ω to zero in the estimation hardly

changes the results, in line with our earlier remarks and the simulation results of Section 4.

Figure 4 gives a graphical presentation of the in-sample estimation results. Figure 4a

and 4b present the filtered estimates of f̃t along with its asymmetric interquartile range

confidence bands. The tail shape parameter varies between approximately 0.4–0.6 for BTC

and 0.35–0.50 for ETH. This implies that the existence of a second or third moment is

already problematic for BTC and ETH, though not always. The confidence bands around

ft suggest that the tail shape parameter is reasonably precisely estimated and that it is far

from zero (the thin-tailed Gumbel case). The confidence bands are asymmetric owing to

the parameter restrictions ω > 0 and 0 < α < 1, which we have imposed during parameter

estimation through non-linear logarithmic and logistic link functions, respectively. Note that

the reported confidence bands are conditional on the estimated thresholds τ̂t.

Panels 4c–4f present BTC’s and ETH’s log-returns and the 95% confidence level thresholds
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Figure 4: Cryptocurrency log-returns, tail shape, and extreme risks

Top panels: filtered tail shape parameter ˆ̃
ft with asymmetric interquartile range confidence band.

Middle panels: Bitcoin/USD (left) and Ether/USD (right) hourly log-returns (× 100). Thresholds
τt are reported at a 95% confidence level. VaR and ES are plotted at an extreme 99.5% confidence
level. The thresholds τt, VaR, and ES or all for the left tail of the log-returns. Bottom panels:
Zoomed-in extreme risks with key events.

(a) BTC/USD fi (b) ETH/USD fi

(c) BTC/USD (d) ETH/USD

(e) BTC/USD (zoom) (f) ETH/USD (zoom)

τt. We also plot the 99.5% VaR and ES, noting that VaR and ES for even more extreme

confidence percentages could easily be computed via (5)–(6). There is clear time variation

in extreme market risks. The bottom panels in Figure 4 provide zoomed-in estimates of

extreme market risks during the so-called “second crypto winter” of 2022, with vertical lines

indicating three key events. VaR and ES at the 99.5% confidence level are particularly
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volatile during 2022. Both market risk measures respond strongly to the collapse of the

Terra/Luna cryptocurrency on May 10, 2022 (first vertical line), see e.g. Uhlig (2022); the

collapse of FTX, a major cryptocurrency intermediary and shadow bank on June 13, 2022

(second vertical line); and the collapse of Celsius, another cryptocurrency intermediary and

shadow bank on Nov 11, 2022 (third vertical line). The 99.5% ES approximately tripled

around each of these events, before reverting to more “normal” levels later on. Panels 4c and

4d also show the more recent decline in tail fatness between mid-2023 and 2025, in line with

the pattern of f̃t as shown in the top panels.

If we consider the VaR violation rates, we obtain a values of 0.89%/0.44%/0.24% for

BTC, and 0.77%/0.45%/0.24% for ETH, which are all quite close to the nominal levels of

1%/0.5%/0.25%. Indeed, given that we have more than 63,000 observations and testing at

a significance level of 1 per cent, we only reject the unconditional coverage test of Kupiec

(2000) for κ = 10%, i.e., when the limiting approximation of de Haan and Ferreira (2006)

for τt → ∞ might not yet be sufficiently accurate. All these test are in-sample, however. In

the next subsection, we therefore perform an out-of-sample evaluation of the new model in

relation to other dynamic tail-shape models.

5.2 Out-of-sample evaluation

In this section, we provide an out-of-sample evaluation where we compare our single time-

varying tail shape model (EVT) from Section 2 with several benchmarks. We first include

two alternative time-varying tail shape methods, namely the two-parameter time-varying

generalized Pareto model (TVGPD) of D’Innocenzo et al. (2024), and the dynamic VaR-ES

model of Patton et al. (2019, referred to as PZC). For the τt thresholds required for the EVT

and TVGPD methods, we use Patton et al. (2019) at a tail-probability level κ > γ, where

the VaR and ES are computed at a 1 − γ confidence level. We also compute the Patton

et al. (2019) VaR and ES for the extreme tail percentage γ rather than the more moderate
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κ. We use κ ∈ {10%, 5%, 1%} and consider γ = κ/10 for all methodologies, as in Section 5.1.

We might expect the TVGPD to generally perform somewhat better than the EVT method,

given its additional freedom with the scale parameter. Whether such an advantage persists

out-of-sample is, however, uncertain. In addition, we might also expect any such difference

to diminish as κ becomes smaller (and thus τt becomes larger) and the limiting result of

de Haan and Ferreira (2006) becomes effective. For completeness, we also include a simple

standard Gaussian GARCH(1,1) model as used in the simulations in Section 4.

We use Nolde and Ziegel (2017)’s approach to compare the different methodologies in

terms of VaR and ES forecasts, which in turn is based on strictly consistent scoring rules

and Diebold-Mariano (DM) tests applied to loss differentials. In particular, we use their

Equations (2.19) and (2.23). The former evaluates the VaR, whereas the latter is based on

the double VaR-ES elicitation criterion function as also used in Patton et al. (2019). The

results are very similar for the other scoring rules in their paper. We use the observations

from 2018–2021 to compute the first in-sample estimates. We then forecast the VaR and ES

for the subsequent year, after which we (recursively) update the parameter estimates of all

models. All DM comparisons are done vis-à-vis the new EVT model. Negative DM statistics

indicate that the EVT model has a lower loss than its competitor and thus performs better

in terms of VaR or VaR–ES.

Table 2 presents the out-of-sample results. In line with the ‘traffic light’ approach in

Nolde and Ziegel (2017), we color cells green if the DM statistic is significantly negative at a

5% level, and red if it is significantly positive. The table yields three main takeaways. First,

we see that differences in the Nolde and Ziegel (2017) criteria are generally limited for all

models, despite the sizable number of out-of-sample observations: the absolute values of the

DM statistics in the table often fall below 2 and have a maximum of slightly over 6. All

models thus seem to perform reasonably well and to be of approximately comparable quality.

Second, we see that the new model and the TVGPD perform similarly, particularly if we

look at the more extreme tail. It is here that the limiting result of de Haan and Ferreira

27



Table 2: Out-of-sample comparison of tail risk measures
Comparison of the EVT model against the PZC model of Patton et al. (2019), the TVGPD model of
D’Innocenzo et al. (2024), and a standard GARCH(1,1) model. The two loss functions are taken from Nolde
and Ziegel (2017) and relate to the VaR (2.19) or to VaR and EL jointly (2.23). Negative values indicate that
the loss of the EVT model is lower. Green (red) values indicate the EVT loss is significantly lower (higher) at
5%. The tail probability κ is used when estimating the time-varying thresholds τt. The VaR and ES for all
models are estimated using a more extreme tail probability γ = κ/10, and thus a high confidence level of 1−γ.

Methods κ = 10% κ = 5% κ = 2.5%

Nolde and Ziegel (2017) loss function
(2.19) (2.23) (2.19) (2.23) (2.19) (2.23)

BTC/USD
EVT↔PZC -1.924 3.307 -3.031 -2.973 -1.997 -2.264

(0.054) (0.001) (0.002) (0.003) (0.046) (0.024)
EVT↔TVGPD -1.364 4.779 -1.289 -0.195 0.928 0.984

(0.172) (0.000) (0.198) (0.846) (0.353) (0.325)
EVT↔GARCH 1.818 1.858 -3.504 -4.370 -5.170 -6.019

(0.069) (0.063) (0.000) (0.000) (0.000) (0.000)

ETH/USD
EVT↔PZC -3.256 0.162 -4.466 -3.951 -3.468 -3.979

(0.001) (0.872) (0.000) (0.000) (0.001) (0.000)
EVT↔TVGPD -2.392 1.941 -1.662 -0.717 -1.353 -1.599

(0.017) (0.052) (0.097) (0.473) (0.176) (0.110)
EVT↔GARCH -1.305 -0.546 -4.549 -4.782 -5.418 -6.000

(0.192) (0.585) (0.000) (0.000) (0.000) (0.000)

(2006) becomes particularly applicable, and the extra tail scale parameter of the TVGPD

model adds less value. We also see that less far out in the tail (e.g., κ = 10), this limiting

result is less accurate and the new model sometimes underperforms compared to the other

models, and the additional flexibility of the TVGPD with a time-varying tail scale parameter

adds value. This is regularly (insignificantly) reversed for κ = 5%, 2.5%.

Third, we confirm our earlier result that PZC and EVT methodologies nicely complement

each other: whereas PZC performs typically better less far out in the tails, the EVT method

appears to do a somewhat better job in the extreme tails, with DM statistics that are regularly

significant. The EVT model also outperforms the standard Gaussian GARCH model. Given

the mutual ranking of PZC, EVT, and TVGPD, the new single time-varying parameter EVT
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Figure 5: VaR forecasts for BTC/USD
Out-of-sample forecasts of extreme VaR at κ = 10% (γ = 1%) and κ = 2.5% (γ = 0.25%) for
BTC/USD. The EVT and TVGPD methods use PZC estimates of the tail threshold τt at a tail
probability κ. The EVT, TVGPD, and PZC VaRs in the figure all relate to an extreme tail
probability γ = κ/10. Hourly BTC/USD VaR forecasts start with an in-sample period of four years
and forecast the VaRs for a year, after which the model is recursively updated annually.

(a) γ = 1% (κ = 10%) (b) γ = 0.25% (κ = 2.5%)

model is clearly among the most competitive EVT-based time-varying tail shape models,

particularly in extreme tails.

The loss comparisons in Table 2 only provide a partial picture of the full results. To see

this, we plot the out-of-sample VaR forecasts for BTC/USD for κ values of 10% and 2.5%,

i.e., a moderate and a more extreme tail area. Again, we set γ = κ/10 and plot the VaR over

a shorter period to better visualize the results. Figure 5 presents the results. There are two

main takeaways. First, we see that all three tail-based models do reasonably well in following

the secular dynamics of risk. The TVGPD and EVT behave and thus perform very similarly.

Second, we see that farther out into the tails (γ = 0.25%), the PZC methodology receives

fewer and fewer POTs to estimate the risk dynamics from. This results in incidental spikes,

followed by rapid (within one month) reversals to a long-term constant VaR value that we

see in the blue line in Figure 5b, and that we have also seen in Figure 1 for simulated data.

Such differences are not visible from the scoring rule results alone, but can be important

for deciding which model to use for setting adequate capital buffer levels, either from an

institutional or supervisory perspective. It also underlines again that both methods nicely

complement each other, with the EVT methods complementing the semi-parametric PZC
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methodology farther out into the tails.

6 Conclusion

We introduced a robust semi-parametric modeling framework for studying persistent time

variation in tail parameters for long univariate time series. To this end, we modeled the time

variation in the shape parameter of the Generalized Pareto Distribution, which approximates

the tail of most heavy-tailed densities found in economics and finance. By re-scaling the

peaks-over-thresholds by their respective thresholds, we obtained a new single factor model

to capture the time variation in extreme tails.

By endowing the time variation in the tail parameter with integrated score-driven dy-

namics, we obtained a simple filter for extreme tail risk that required only one or two static

parameters to be estimated from the data. In this way, the paper complements standard

well-known and widely used integrated filters for price volatility with a similar filter for the

extreme tail risk. Given its reliance on Extreme Value Theory (EVT), the filter is less prone

to over-react to incidental large asset returns, thus augmenting less robust semi-parametric

filters for Expected Shortfall such as the one of Patton et al. (2019), and insensitive to

changes in the center as opposed to the tails of the distribution by only reacting to the

Peaks-over-Threshold (POT) observations; compare Massacci (2017).

As a theoretical contribution, this paper also contributes to the emerging literature on

score-driven volatility filters with unit coefficient (integrated) dynamics and the existing lit-

erature on iGARCH filters with results for integrated dynamics for time-varying parameters

describing higher-order properties of the distribution. We established parameter regions for

stationarity, ergodicity, and invertibility of the filter process, and considered conditions for

consistency and asymptotic normality of the maximum likelihood estimator of the model’s

static parameters. The ease of the method’s applicability and its implications, particularly

in the extreme tail, were illustrated by studying the time variation in the tails of two cryp-
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tocurrency exchange rate returns over both quiet and turbulent times. The methodology

works particularly well in conjunction with the approach of Patton et al. (2019) to set the

tail thresholds, where the EVT approach allows us to extrapolate the risk dynamics further

into the tail.

Finally, our out-of-sample evaluation exercise suggests an avenue for future work: com-

bining risk models to obtain an even more comprehensive picture of extreme risk dynamics

than any single model can provide in isolation. This idea could involve the combination

of extreme VaR and ES forecasts, with weights guided by each model’s recent performance

under a Nolde and Ziegel (2017) scoring rule. We leave such extensions to future research.
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A Proofs

NIC for the EVT-based VaR

Let the conditional exceedance probability of τt be equal to κ, and let 0 < κ < γ denote our

extreme tail probability. Consider modeling the right-hand extreme tail. For a given values

of fi = f and τt = τ , we have

fi+1 = ω + f + α
(
ln(1 + yi)− f

)
,

V aRi+1 = τ ·
(
γ

κ

)−fi+1

= τ ·
(
γ

κ

)−ω−(1−α)f−α ln(1+yi)

= τ

(
γ

κ

)−ω−(1−α)f

·
(
γ

κ

)−α ln(1+yi)

= C ·
(
γ

κ

)−α ln(1+yi)

= C · exp

(
ln

(
γ

κ

))−α ln(1+yi)

= C · exp

(
−α ln(1 + yi) ln

(
γ

κ

))

= C · exp
(
ln(1 + yi)

)−α ln(κ/γ)
= C · (1 + yi)

−α ln(κ/γ)

= C ·
(
Xt/τ

)α ln(κ/γ)
= C̃ ·X−α ln(κ/γ)

t ,

for Xt exceeding the threshold τ , i.e., Xt > τ > 0. The shape of the news impact curve for

the VaR based on the EVT approach is thus concave as long as α ln(κ/γ) < 1. Note that for

the plots in Section 2.3 we have re-cast our EVT approach to the extreme left-hand tail to

make it directly comparable to the approach of Patton et al. (2019).

Preliminary results

Lemma A.1. Under Assumptions 1 and 2, the inequality

E
[
ln |1 + α (ϵ− 1)|

]
< 0,
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is always satisfied.

Proof. For b = α/(1− α) > 0, we have

E
[
ln |1 + α (ϵ− 1)|

]
= ln(1− α) +

∫ ∞

0

ln(1 + bx)e−xdx

= ln(1− α)−
[
ln(1 + bx)e−x

]∞
0
+

∫ ∞

0

b

1 + bx
e−xdx

= ln(1− α) +

∫ ∞

0

b

1 + bx
e−xdx

= ln(1− α) + e1/b
∫ ∞

1/b

e−x

x
dx

= ln(1− α)− eα
−1−1 Ei

(
1− α−1

)
< 0,

for 0 < α < 1, where Ei(z) = −
∫∞
−z

t−1 e−t dt denotes the exponential integral.

Proof of Theorem 1

Since ln(1 + yi) = fi(θ0)ϵi, we can write the score-driven filter as

f̂i+1(θ) =ω + f̂i(θ) + α
(
ln(1 + yi)− f̂i(θ)

)
=ω + f̂i(θ) + α

(
fi(θ0)ϵi − f̂i(θ)

)
=ω + (1− α) f̂i(θ) + αϵifi(θ0).

When evaluating the process above at the true parameter vector θ0, we note that the unob-

served process {fi+1(θ0)}i∈Z satisfies

fi+1(θ0) =ω0 + (1− α0 + α0ϵi) fi(θ0).

Note that both f̂i(θ) and fi(θ0) are embedded in the stochastic recurrence equations (SREs)

of the form f̂i+1(θ) = ϕ̂(f̂i(θ), yi, θ) and fi+1(θ0) = ϕ(fi(θ0), ϵi, θ0), respectively.
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Part (i): To prove stationarity and ergodicity (SE) of fi(θ0), we apply Theorem 3.1 of

Bougerol (1993). We first check the log-moment condition, which is easily satisfied since

E
[
ln+
∣∣ϕ(f̄1, ϵi, θ0)∣∣] ≤ E

[
lnω0 + ln

(
1 +

(1− α0 + α0ϵi)

ω0

f̄1

)]

= lnω0 + E
[
(1− α0 + α0ϵi)

ω0

f̄1

]
= lnω0 +

1

ω0

f̄1 < ∞,

for all f̄1 ∈ (0,∞), where we have used the fact that ϵi is IID exponentially distributed with

unit mean following Assumption 1. The contraction condition of Bougerol (1993) follows

directly, as

E

sup
f̄

ln

∣∣∣∣∣∂ϕ(f̄ , ϵi, θ0)∂f̄

∣∣∣∣∣
 = E

[
ln
∣∣1 + α0(ϵi − 1)

∣∣] < 0,

for α0 ∈ (0, 1) using Lemma A.1 above. Hence, all the conditions of Theorem 3.1 of Bougerol

(1993) are satisfied and we conclude that an SE solution fi(θ0) exists and that any initialized

sequence converges exponentially fast almost surely (e.a.s.) to this unique SE limit. Given

yi = exp(fi(θ0)ϵi) − 1, it follows immediately that yi is SE by Proposition 4.3 of Krengel

(1985).

The existence of moments follows from Lemma 2.4 of Straumann and Mikosch (2006).

The almost sure SE representation of fi(θ0) equals

fi(θ0) = ω0

∞∑
i=0

i−1∏
j=0

(
1 + α0(ϵi−j − 1)

)
> 0. (A.1)

Note that E
[
(1 + α0(ϵi − 1))q

]
< ∞ for any finite q > 0 given that ϵi has a unit exponential

distribution. Following to Lemma 2.4 of Straumann and Mikosch (2006), there exists an

0 < η < 1 and a sufficiently small 0 < r ≤ q such that E[(1 + α0(ϵi − 1))r] = η and thus
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E[
∏i−1

j=0(1 + α0(ϵi−j − 1))r] = ηi. Using this, we obtain

E[fi(θ0)r] = ωr
0

∞∑
i=0

E

i−1∏
j=0

(
1 + α0(ϵi−j − 1)

)r = ωr
0

∞∑
i=0

ηi < ∞.

As ln(1 + yi) = fi(θ0)ϵi, this also directly establishes the existence of a log-moment for

ln(1 + yi) and thus proves the first part of the theorem.

Part (ii): To prove that the filter f̂i(θ) is SE, we again apply Theorem 3.1 of Bougerol

(1993). The existence of a log-moment is ensured because

E

[
ln+ sup

θ∈Θ

∣∣∣ϕ̂(f̄1, yi, θ)∣∣∣] ≤ C + ln+ sup
θ∈Θ

ω + ln+ sup
θ∈Θ

(1− α) + ln+ f̄1 + sup
θ∈Θ

αE
[
ln+ ln (1 + yi)

]
< ∞,

for any f̄1 ∈ (0,∞), and where C is a finite constant. The last inequality follows from the

assumed log+ moment for ln(1+ yi) and is automatically satisfied via part (i) of the theorem

if the model is correctly specified.

To establish the contraction property, note that

E

sup
θ∈Θ

sup
f̄

ln

∣∣∣∣∣∂ϕ̂(f̄ , yi, θ)∂f̄

∣∣∣∣∣
 = E

[
sup
θ∈Θ

ln (1− α)

]
= sup

θ∈Θ
ln (1− α) < 0,

as 0 < α ≤ α ≤ ᾱ < 1. We can now use Theorem 3.1 of Bougerol (1993) and conclude that

f̂i(θ) is asymptotically SE, and converges e.a.s. to a unique SE limit fi(θ), i.e., supθ∈Θ |f̂i(θ)−

fi(θ)|
e.a.s.→ 0.

This establishes the second part of the theorem.
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Part (iii): First note that f̂i(θ) ≥ ωf , and thus

sup
θ∈Θ

∣∣∣∣∣ 1

f̂i(θ)
− 1

fi(θ)

∣∣∣∣∣ ≤ ω2
f · sup

θ∈Θ

∣∣∣f̂i(θ)− fi(θ)
∣∣∣ e.a.s.−−−→ 0.

It then follows directly from Lemma 2.1 of Straumann and Mikosch (2006) that ẑfi (θ)
e.a.s.−−−→

zfi (θ) uniformly over θ ∈ Θ if E[ln+ fi(θ0)] < ∞. The latter follows immediately from Part

(i) above.

The boundedness of the moments follows along the same lines as Lemma A3 of Francq

and Zakoïan (2012) by replacing their a(ηt) = βFZ + αFZη
2
t for IID ηt with zero mean, unit

variance, and P (η2t = 1) < 1, by our 1 − α + αϵi for IID unit exponential ϵi, such that

0 < βFZ = 1 − α < 0 and αFZ = α, where βFZ and αFZ denote the parameters in the

parameterization of Francq and Zakoïan (2012). Similarly, the boundedness of the inverse

moment follows directly along the lines of Lemma 6 of Lee and Hansen (1994).

Proof of Theorem 3

Consistency: We show consistency by verifying the conditions in Theorem 3.4 of White

(1994) with respect to the sequence {Q̂nT
(θ)}n∈N as defined in (9). Specifically: (i) The

parameter space Θ is compact; (ii) {Q̂nT
(θ)}n∈N is a sequence of random functions continuous

on Θ almost surely; (iii) Q̂nT
(θ) = n−1

∑nT

i=1 Q̂i(θ) → Q̄(θ) := E
[
Qi(θ)

]
as nT → ∞ almost

surely; and (iv) {Q̄(θ) : Θ 7→ R} has an identifiably unique maximizer θ0 ∈ Θ, that is,

Q̄(θ0) > Q̄(θ) ∀θ 6= θ0.

Condition (i) holds by assumption, whereas (ii) trivially follows by continuity of {ẑfi (θ)}i∈Z

and {zfi (θ)}i∈Z. Furthermore, from Theorem 1 we obtain that E
[
supθ∈Θ

∣∣∣Q̂i(θ)
∣∣∣] < ∞ and

E
[
supθ∈Θ

∣∣Qi(θ)
∣∣] < ∞. Theorem 1 also ensures that the process {ẑfi (θ)}i∈Z converges e.a.s.

to its stationary and ergodic limit {zfi (θ)}i∈Z. We thus have

sup
θ∈Θ

∣∣∣Q̂i(θ)−Qi(θ)
∣∣∣ ≤ sup

θ∈Θ

∣∣∣ln ẑfi (θ)− ln zfi (θ)
∣∣∣− ϵi · sup

θ∈Θ

∣∣∣ẑfi (θ)− zfi (θ)
∣∣∣ .
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By the mean value theorem, there exist an intermediate point f̂ ⋆
i (θ) between f̂i(θ) and fi(θ)

such that, using Lemma 2.1 of Straumann and Mikosch (2006), we obtain that

sup
θ∈Θ

∣∣∣ln ẑfi (θ)− ln zfi (θ)
∣∣∣ = sup

θ∈Θ

∣∣∣ln f̂iθ)− ln fi(θ)
∣∣∣ = sup

θ∈Θ

∣∣∣∣ 1

f ⋆
i (θ)

∣∣∣∣ sup
θ∈Θ

∣∣∣f̂i(θ)− fi(θ)
∣∣∣

≤ 1

ωf

sup
θ∈Θ

∣∣∣f̂i(θ)− fi(θ)
∣∣∣ e.a.s.−−−→ 0.

Since E [ϵi] = 1 by Assumption 1, we can again apply Lemma 2.1 of Straumann and Mikosch

(2006) to get

ϵi · sup
θ∈Θ

∣∣∣ẑfi (θ)− zfi (θ)
∣∣∣ e.a.s.−−−→ 0.

It thus follows that

sup
θ∈Θ

∣∣∣Q̂i(θ)−Qi(θ)
∣∣∣ e.a.s.−−−→ 0, (A.2)

with E
[
supθ∈Θ

∣∣Qi(θ)
∣∣] < ∞. Let QnT

(θ) =
∑nT

i=1 ln z
f
i (θ)− ϵi (z

f
i (θ)− 1) be the SE limit of

Q̂nT
(θ). Now, from the triangle inequality

sup
θ∈Θ

∣∣∣∣ 1nT

Q̂nT
(θ)− Q̄(θ)

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣ 1nT

Q̂nT
(θ)−QnT

(θ)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ 1nT

QnT
(θ)− Q̄(θ)

∣∣∣∣ .
The first term on the RHS vanishes almost surely using Lemma 2.1 of Straumann and Mikosch

(2006) and (A.2). For the second term, we can apply the ULLN for stationary and ergodic

sequences of Rao (1962). As a result, we have

lim
nT→∞

1

nT

nT∑
i=1

Q̂i(θ) = Q̄(θ) = 1 + E
[
ln zfi (θ)− zfi (θ)

]
, (A.3)

almost surely. For the last equality we have used the fact that ϵi is independent of zfi (θ) and

E [ϵi] = 1, as implied by Assumption 1.

Furthermore, Q̄(θ) ≤ 0 with equality if and only if zfi (θ) = 1 almost surely, because
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log(z) − z + 1 ≤ 0 for any z ∈ R+, with equality only for z = 1. Note that zfi (θ0) = 1.

This in turn implies that Q̄(θ0) = 0. We conclude the consistency proof by showing that

if zfi (θ) = zfi (θ0) = 1 almost surely for every i, then it must be that ω = ω0 and α0 = α.

To show this, note that it suffices to show that the implication holds for fi(θ) = fi(θ0).

Therefore, let fi(θ) = fi(θ0) almost surely for every i. We then have that

0 = fi+1(θ)− fi+1(θ0)

= (ω − ω0) +
(
fi(θ)− fi(θ0)

)
− αfi(θ) + α0 fi(θ0) + (α− α0) ϵifi(θ0)

= (ω − ω0) + (α− α0) (ϵi − 1) fi(θ0),

almost surely. Obviously, from Assumption 1, ϵi is an Fi-measurable random variable with

a non-degenerate distribution, and from Theorem 1 fi(θ0) also has a non-degenerate distri-

bution. As a result, the equality only holds almost surely if both α = α0 and ω = ω0.

The strong consistency of the MLE θ̂nT
in (3) is then guaranteed by noting that all the

conditions of Theorem 3.4 in White (1994) are satisfied.

Asymptotic normality: Next, by strong consistency of the MLE θ̂nT
, we obtain that, for

large enough nT the following Taylor expansion is allowed:

∇θQ̂nT
(θ̂nT

) = ∇θQ̂nT
(θ0) +∇θθQ̂nT

(θ⋆)
(
θ̂nT

− θ0

)
, (A.4)

where Q̂nT
(θ) =

∑nT

i=1 Q̂i(θ) and |θ⋆ − θ0| <
∣∣∣θ̂nT

− θ0

∣∣∣. It is easy to see that since the MLE

θ̂nT
is the maximizer of Q̂nT

(θ) and θ0 ∈ int(Θ) by Assumption 2, we have ∇θQ̂nT
(θ̂nT

) = 02,

and hence we can rewrite (A.4) as

1

nT

∇θθQ̂nT
(θ⋆)

(
θ̂nT

− θ0

)
= − 1

nT

∇θQ̂nT
(θ0). (A.5)
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To prove the asymptotic normality of the MLE θ̂nT
we verify the conditions given in The-

orem 6.2 of White (1994). In particular, we let (Ω,F ,P) be a complete probability space,

and verify that: (i) The parameter space Θ is a compact subset of R2 with non-empty in-

terior, (ii) the random function Q̂nT
(θ) : Ω × Θ 7→ R is continuously differentiable of order

2 on Θ almost surely, (iii) The MLE θ̂nT
: Ω 7→ Θ is F -measurable and strongly consis-

tent, i.e. θ̂nT

a.s.→ θ0 where θ0 ∈int(Θ); (iv) the score vector satisfies n
−1/2
T ∇θQnT

(θ0) ⇒

N
(
02,E

[
∇θQi(θ0)∇θQi(θ0)

⊤]); (v) the uniform stochastic convergence of the Hessian ma-

trix, that is, supθ∈Θ

∥∥∥ 1
nT

∇θθQ̂nT
(θ)−∇θθQ̄(θ)

∥∥∥ a.s.→ 0, where ∇θθQ̄(θ) = E
[
∇θθQi(θ)

]
is

finite; (vi) the limit ∇θθQ̄(θ) evaluated at the true parameter vector θ0 satisfies −Q̄(θ0) =

−E
[
∇θθQi(θ0)

]
= I(θ0), where I(θ0) is the Fisher’s information matrix.

Obviously, (i)–(iii) are directly implied by Assumptions 1 and 2.

For (iv) it suffices to prove that {∇θQi(θ0)}i∈N is a stationary and ergodic zero-mean mar-

tingale difference process with respect to the filtration {Fi}i∈N with Fi = σ{ϵi, ϵi−1, ϵi−2, . . . }.

In fact, note that

E
[
∇θQi(θ0)

∣∣∣ Fi−1

]
= ∇θzfi (θ0)

(
1

zfi (θ0)
− E

[
ϵi|Fi−1

])
= 02, (A.6)

which clearly follows from Assumption 1, the fact that ∇θzfi (θ) are Fi−1-measurable, and

that zfi (θ0) = 1 for all i.

Moreover, we can also prove that ∇θQi(θ0) is square-integrable since we clearly have

zfi (θ0) = 1, and therefore ∇θzfi (θ0) = −∇θ(1/zfi (θ0)) and

E
[
∇θQi(θ0)∇θQi(θ0)

⊤
]
= E

∇θzfi (θ0)∇θzfi (θ0)
⊤

(
1

zfi (θ0)
− ϵi

)2


= E
[
∇θzfi (θ0)∇θzfi (θ0)

⊤
]

= E

∇θ

(
1

zfi (θ0)

)
∇θ

(
1

zfi (θ0)

)⊤
 < ∞,
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as implied by Assumption 1 together with Lemma B.2. Therefore, we are allowed to apply

the CLT for square-integrable martingales of Billingsley (1961) in order to obtain

n
−1/2
T ∇θQnT

(θ0) ⇒ N
(
02,E

[
∇θQi(θ0)∇θQi(θ0)

⊤
])

.

Next, we focus on (v) and prove the uniform stochastic convergence of the Hessian matrix.

From the triangle inequality

sup
θ∈Θ

∥∥∥∥ 1

nT

∇θθQ̂nT
(θ)−∇θθQ̄(θ)

∥∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥ 1

nT

∇θθQ̂nT
(θ)− 1

nT

∇θθQi(θ)

∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥ 1

nT

∇θθQnT
(θ)−∇θθQ̄(θ)

∥∥∥∥ , (A.7)

where {∇θθQi(θ)}i∈Z is stationary and ergodic and ∇θθQ̄(θ) = E
[
∇θθQi(θ)

]
where, by

Lemma B.3, E
[
supθ∈Θ

∥∥∇θθQi(θ)
∥∥] exists.

Hence, from the ULLN of Rao (1962) for stationary and ergodic sequences,

sup
θ∈Θ

∥∥∥∥ 1

nT

∇θθQnT
(θ)−∇θθQ̄(θ)

∥∥∥∥ a.s.−−→ 0.

Now, from Theorem 1 and Lemma B.1 together with continuity arguments, we obtain

sup
θ∈Θ

∥∥∥∇θθQ̂i(θ)−∇θθQi(θ)
∥∥∥ e.a.s.−−−→ 0.

Combining these results, we conclude that (A.7) vanishes almost surely, that is

sup
θ∈Θ

∥∥∥∥ 1

nT

∇θθQ̂nT
(θ)−∇θθQ̄(θ)

∥∥∥∥ a.s.−−→ 0.

Moreover, by the strong consistency of the MLE, and the fact that θ 7→ ∇θθQ̄(θ) is continuous,

to complete the proof, we only need to verify (vi) and show that ∇θθQ̄(θ0) is non-singular.
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By applying the law of iterated expectations and Assumption 1, we get that

E
[
∇θθQi(θ0)

]
= E

∇θθzfi (θ0)

(
1

zfi (θ0)
− ϵi

)
−∇θzfi (θ0)∇θzfi (θ0)

⊤ 1

zfi (θ0)
2


= E

[
E
[
∇θθzfi (θ0) (1− ϵi)−∇θzfi (θ0)∇θzfi (θ0)

⊤
∣∣∣ Fi−1

]]
= −E

[
∇θzfi (θ0)∇θzfi (θ0)

⊤
]
,

since zfi (θ0), ∇θzfi (θ0) and ∇θθzfi (θ0) are Fi−1-measurable, zfi (θ0) = 1 for all i, and E [ϵi] = 1.

Note that the process {∇θzfi (θ0)}i∈Z can be written as

∇θzfi+1(θ) = ∇θ

(
fi+1(θ0)

fi+1(θ)

)
= − fi+1(θ0)

fi+1(θ)2
∇θfi+1(θ)

= − fi+1(θ0)

fi+1(θ)2

(
∇θω +

(
∇θα

) (
fi(θ0)ϵi − fi(θ)

)
+ (1− α)∇θfi(θ)

)
=

(
fi+1(θ0)

fi+1(θ)

)2 (
fi(θ0)

fi+1(θ0)

) (
wt(θ) + (1− α)∇θzfi (θ)

)
, (A.8)

wt(θ) =
(
−1/fi(θ0) , (1/zfi (θ))− ϵi

)⊤
,

where fi(θ0)/fi+1(θ0) = 1/(1 + α0(ϵi − 1) + ω0/fi(θ0)). Since {∇θzi(θ0)}i∈Z are stationary

and ergodic, if ∇θθQ̄(θ) were singular, then ∃λ ∈ R2\{02} such that λ⊤∇θzfi (θ0) = 02

almost surely ∀i ∈ N. This is obviously ruled out by the functional form of (A.8) and

the unit exponential distributional form of ϵi and, therefore, it must be that λ⊤∇θzfi (θ0) =

02 ⇐⇒ λ = 02 and thus, ∇θθQ̄(θ0) is non-singular. In conclusion, we note that the Fisher’s

information equality E
[
∇θQi(θ0)∇θQi(θ0)

⊤] = −E
[
∇θθQi(θ0)

]
= I(θ0) follows by standard

arguments.
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B Technical lemmas

We define the operators ∇θ = ∂
∂θ

and ∇θθ = ∂2

∂θ∂θ⊤
. In addition, we denote the score vector

by ∇θQi(θ) =
(
∇ωQi(θ),∇αQi(θ)

)⊤ ∈ R2, and the Hessian matrix

∇θθQi(θ) =

∇ωωQi(θ) ∇ωαQi(θ)

∇ωαQi(θ) ∇ααQi(θ)

 ∈ R2×2.

It is important to note that differentiating the log-likelihood difference Qi(θ) is equivalent

to differentiating ℓ̂i(θ) as defined in (3) since ℓi(θ0) does not depend on θ. Define zf,inv
i (θ) =

1/zfi (θ). The elements of the score vector are given by

∇θQi(θ) =
(
zfi (θ)

−1 − ϵi

)
∇θzfi (θ) =

(
ϵi − zf,inv

i (θ)
) ∇θzf,inv

i (θ)

zf,inv
i (θ)2

, (B.1)

and

∇θθQi(θ) =
(
zfi (θ)

−1 − ϵi

)
∇θθzfi (θ)−

∇θzfi (θ)∇θzfi (θ)
⊤

zfi (θ)
2

=
(
ϵi − zf,inv

i (θ)
)(∇θθzf,inv

i (θ)

zf,inv
i (θ)2

− ∇θzf,inv
i (θ)∇θzf,inv

i (θ)⊤

zf,inv
i (θ)3

)

− ∇θzf,inv
i (θ)∇θzf,inv

i (θ)⊤

zf,inv
i (θ)2

,

(B.2)

where the first derivative processes ∇θzf,inv
i (θ) = −zfi (θ)

2 ∇θzfi (θ) are defined as ∇θzf,inv
i (θ) =(

∇ωzf,inv
i (θ),∇αzf,inv

i (θ)
)⊤

∈ R2, where

∇θzf,inv
i+1 (θ) =

∇ωzf,inv
i+1 (θ)

∇αzf,inv
i+1 (θ)

 =


∇ωfi+1(θ)

fi+1(θ0)

∇αfi+1(θ)

fi+1(θ0)

 =
∇θfi+1(θ)

fi+1(θ0)
, (B.3)
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and

∇θfi+1(θ) = ϕθ
i

(
fi(θ),∇θfi(θ), ϵi, θ

)
=

 1

fi(θ0)ϵi − fi(θ)

+ (1− α)∇θfi(θ). (B.4)

For the second derivative processes ∇θθzf,inv
i (θ), we have

∇θθzf,inv
i+1 (θ) =

∇θθfi+1(θ)

fi+1(θ0)
= fi+1(θ0)

−1

∇ωωfi+1(θ) ∇ωαfi+1(θ)

∇ωαfi+1(θ) ∇ααfi+1(θ)

 , (B.5)

∇θθfi+1(θ) = ϕθθ
i

(
fi(θ),∇θfi(θ),∇θθfi(θ), ϵi, θ

)

= ∇θ⊤


 1

fi(θ0)ϵi − fi(θ)

+ (1− α)∇θfi(θ)


= −

 0 ∇ωfi(θ)

∇ωfi(θ) 2∇αfi(θ)

+ (1− α)∇θθfi(θ). (B.6)

Similar derivations hold for the initialized counterparts ẑf,inv
i+1 (θ) = f̂i+1/fi+1(θ0).

The following Lemma shows that the derivative processes ∇θzf,inv
i (θ) and ∇θθzf,inv

i (θ) of

the ratio process {zf,inv
i (θ)}i∈Z are also asymptotically stationary and ergodic with bounded

log-moments.

Lemma B.1. Under the conditions of Theorem 1,

sup
θ∈Θ

∥∥∥∇θẑf,inv
i (θ)−∇θzf,inv

i (θ)
∥∥∥ e.a.s.−−−→ 0,

sup
θ∈Θ

∥∥∥∇θθẑf,inv
i (θ)−∇θθzf,inv

i (θ)
∥∥∥ e.a.s.−−−→ 0,

for stationary and ergodic derivative processes ∇θzf,inv
i (θ) and ∇θθzf,inv

i (θ).
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Proof of Lemma B.1

We note that ∇θf̂i+1(θ) is a function of both the filter f̂i(θ) and its derivative ∇θf̂i(θ). To

establish the stationarity and ergodicity, we verify the conditions given in Theorem 2.10 of

Straumann and Mikosch (2006) for perturbed stochastic recurrence equations (SREs).

It is immediate to see that the conditions S.1 and S.2 stated in Theorem 2.10 of Strau-

mann and Mikosch (2006) are the same as the log-moment and the contraction condition in

Theorem 3.1 of Bougerol (1993), and these are clearly implied by Theorem 1, since the map-

ping function ϕθ
i

(
f̂i(θ),∇θf̂i(θ), ϵi, θ

)
has finite log-moment and the contraction condition is

satisfied because 0 < α < α < ᾱ < 1. We then only have to check condition S.3 of Strau-

mann and Mikosch (2006), that ensures that the perturbed and unperturbed SRE converge

sufficiently fast for the difference between their asymptotic solutions to vanish exponentially

fast.

The condition follows by showing that

sup
θ∈Θ

∥∥∥∥ϕθ
i

(
f̂i(θ),∇θf̄1(θ), ϵi, θ

)
− ϕθ

i

(
fi(θ),∇θf̄1(θ), ϵi, θ

)∥∥∥∥ e.a.s.−−−→ 0,

where ∇θf̄1(θ) is some fixed starting point for the derivative recursion. It is straightforward

to see that the norm is given by

sup
θ∈Θ

∥∥∥∥∥∥∥
 0

f̂i(θ)− fi(θ)


∥∥∥∥∥∥∥ e.a.s.−−−→ 0.

As ∇θẑf,inv
i (θ) = ∇θf̂i(θ)/fi(θ0), the first result now follows immediately.

The second result follows along the same lines, but now using the SRE defined by

ϕθθ
i (fi(θ),∇θfi(θ),∇θθfi(θ)) in (B.6) and using the e.a.s. convergence of both f̂i(θ) and

∇θf̂i(θ) to their SE limits.

Next we introduce another lemma that provides a suitable number of bounded moments
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for the derivatives of the ratio process {zf,inv
i (θ)}i∈Z, i.e., {∇θzf,inv

i (θ)}i∈Z and {∇θθzf,inv
i (θ)}i∈Z.

As it is clear from equations (B.1) and (B.2), this is a necessary step to ensure that the score

vector of the log-likelihood is a martingale difference sequence with bounded and constant

variance-covariance matrix and, further, that the empirical mean of the negative Hessian

matrix converges almost surely to a positive-definite constant matrix.

Lemma B.2. Under the conditions of Theorem 1, the derivatives processes {∇θzf,inv
i (θ)}i∈Z

and {∇θθzf,inv
i (θ)}i∈Z have k uniformly bounded moments ∀k > 0, that is

E

[
sup
θ∈Θ

∥∥∥∇θzf,inv
i (θ)

∥∥∥k] < ∞, E

[
sup
θ∈Θ

∥∥∥∇θθzf,inv
i (θ)

∥∥∥k] < ∞.

Proof of Lemma B.2

Consider the SRE (B.3), then we have
∥∥∥∇θzf,inv

i (θ)
∥∥∥ =

∥∥∇θfi(θ)/fi(θ0)
∥∥, and

∥∥∥∥∥∇θfi+1(θ)

fi(θ0)

∥∥∥∥∥ ≤ (1− α)i

∥∥∥∥∥∇θf̄1(θ)

ω0

∥∥∥∥∥+
i∑

j=0

(1− α)j

∥∥∥∥∥∥∥
 1

ω0

ϵi−jfi−j(θ0)

fi(θ0)
− fi−j(θ)

fi(θ0)


∥∥∥∥∥∥∥ ,

so that, for i sufficiently large, we get∥∥∥∥∥∇θfi+1(θ)

fi(θ0)

∥∥∥∥∥ ≤ C +
∞∑
j=0

(1− α)j
∥∥∥∥ϵi−jfi−j(θ0)

fi(θ0)

∥∥∥∥+ ∞∑
j=0

(1− α)j
∥∥∥∥fi−j(θ)

fi(θ0)

∥∥∥∥ .
Since Theorem 1 implies that E

[
log+

∣∣ϵifi(θ0)∣∣] ≤ log 2 + E
[
log+ |ϵi|

]
+ E

[
log+

∣∣fi(θ0)∣∣] <
∞ and E

[
log+

∣∣fi(θ)∣∣] < ∞, then by Lemma 2.2 of Berkes et al. (2003) and using the

exponential decay of the weights (1−α), it holds that
∑i

j=0 (1− α)j
∥∥ϵi−jfi−j(θ0)

∥∥ < ∞ and∑t
j=0 (1− α)j

∥∥fi−j(θ)
∥∥ < ∞ with probability one.

Next, we also note that by Assumption 1 it clearly holds that E
[
|ϵi|r

]
< ∞ for some

sufficiently small r > 0, whereas in Theorem 1 we already proved that E
[∣∣fi(θ0)∣∣r] < ∞.

From this, it follows that E
[
supθ∈Θ

∣∣fi(θ)∣∣r] < ∞, because, for i sufficiently large and the
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strict stationarity of
{
fi(θ)

}
i∈Z, we have

fi+1(θ) =ω + (1− α) fi(θ) + α ln(1 + yi) = ω + (1− α) fi(θ) + αϵifi(θ0)

=
ω

α
+

∞∑
j=0

(1− α)j ϵi−jfi−j(θ0), (B.7)

so that, for all δ > 0, an application of the Markov’s and Cauchy-Schwartz inequalities yields

P

sup
θ∈Θ

∞∑
j=0

(1− α)j ϵi−jfi−j(θ0) > δ

 ≤ δ−r/2E
[
|ϵ0|r

]
E
[∣∣f0(θ0)∣∣r] sup

θ∈Θ

∞∑
j=0

(1− α)j < ∞.

Moreover, using the almost sure representation in (B.7), we have∥∥∥∥∥∇ω

(
fi+1(θ)

fi+1(θ0)

)∥∥∥∥∥ =

∥∥∥∥∇ωfi+1(θ)

fi+1(θ0)

∥∥∥∥ =
∥∥∥(α fi+1(θ0)

)−1
∥∥∥ ≤ ‖αω0‖−1 , (B.8)

and, using ϵifi(θ0) ≤ α−1
0 fi+1(θ0),

∥∥∥∥∇αfi+1(θ)

fi+1(θ0)

∥∥∥∥ =

∥∥∥∥∥− ω
α2 +

∑∞
j=0 (1− α + j α) (1− α)j−1 ϵi−jfi−j(θ0)

fi+1(θ0)

∥∥∥∥∥

≤ ω

α2 ω0

+

∥∥∥∥∥
∑∞

j=0 (1− α + j α) (1− α)j−1 ϵi−jfi−j(θ0)

ω0 +
∑∞

j=0(1− α)jϵi−jfi−j(θ0)

∥∥∥∥∥

=
ω

α2 ω0

+

∥∥∥∥∥
∑∞

j=0 (1− α + j α) (1− α)j−1 ln(1 + yi−j)

ω0 +
∑∞

j=0(1− α)j ln(1 + yi−j)

∥∥∥∥∥ . (B.9)

The rest of the proof now follows along the same lines as Lemma 5.2 in Berkes et al. (2003).

A similar argument proves the result for the second derivative process {∇θθzf,inv
i (θ)}i∈Z.

Lemma B.3. Under the conditions of Theorem 1, the Hessian processes {∇θθzf,inv
i (θ)}i∈Z
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has a uniformly bounded moment, that is

E

[
sup
θ∈Θ

∥∥∥∇θθQi(θ)
∥∥∥] < ∞.

Proof of Lemma B.3

Using equation (B.2), together with a combination of Hölder and Minkowsky inequalities, we

obtain

E

[
sup
θ∈Θ

∥∥∥∇θθQi(θ)
∥∥∥]

≤

E

[
sup
θ∈Θ

∥∥∥ϵi − zf,inv
i (θ)

∥∥∥2]
1/2

E

sup
θ∈Θ

∥∥∥∥∥∇θθzf,inv
i (θ)

zf,inv
i (θ)2

− ∇θzf,inv
i (θ)∇θzf,inv

i (θ)⊤

zf,inv
i (θ)3

∥∥∥∥∥
2



1/2

+ E

sup
θ∈Θ

∥∥∥∥∥∇θzf,inv
i (θ)∇θzf,inv

i (θ)⊤

zf,inv
i (θ)2

∥∥∥∥∥


≤C ×

(E [ϵ2i ])1/2 +
E

[
sup
θ∈Θ

∣∣∣zf,inv
i (θ)

∣∣∣2]
1/2



×


E

sup
θ∈Θ

∥∥∥∥∥∇θθzf,inv
i (θ)

zf,inv
i (θ)2

∥∥∥∥∥
2



1/2

+

E

sup
θ∈Θ

∥∥∥∥∥∇θzf,inv
i (θ)∇θzf,inv

i (θ)⊤

zf,inv
i (θ)3

∥∥∥∥∥
2



1/2


+ C × E

sup
θ∈Θ

∥∥∥∥∥∇θzf,inv
i (θ)∇θzf,inv

i (θ)⊤

zf,inv
i (θ)2

∥∥∥∥∥
 .

By Assumption 1 we clearly have that E
[
ϵ2i
]
= 1 whereas by Theorem 1(iii) it holds that

E
[
supθ∈Θ

∣∣∣zf,inv
i (θ)

∣∣∣k] = E
[
supθ∈Θ

∣∣∣1/zfi (θ)∣∣∣k] < ∞ for any k > 0. Furthermore, in Lemma

B.2 we proved that the derivative processes satisfy E
[
supθ∈Θ

∥∥∥∇θzf,inv
i (θ)

∥∥∥k] < ∞ and

E
[
supθ∈Θ

∥∥∥∇θθzf,inv
i (θ)

∥∥∥k] < ∞ for any k > 0, and therefore, by combining all these results,

we infer that E
[
supθ∈Θ

∥∥∇θθQi(θ)
∥∥] < ∞, thus concluding the proof of the Lemma.
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C Derivation of market risk measures

To derive the one-step-ahead VaR, we note that

G(Xt) = 1−G(Xt) = P(Xt > Xt) = P(Xt > τt)P(Xt > Xt|Xt > τt)

= P(Xt > τt)P(Xt > Xt|(Xt − τt)/τt > 0) = G(τt)F (yi),

where the third equality sign uses a standard conditioning argument, and yi = (Xti − τti)/τti .

We can use this result to obtain VaR1−γ(Xt | Ft−1, θ) = q1−γ
t (Xt) by setting

G(Xti) = G(τti)F (yi) = γ

⇐⇒ nti

ti
(1 + yi)

−1/fi = γ

⇐⇒ 1 + τ−1
ti

(q1−γ
ti (Xti)− τti) =

(
γ

nti/ti

)−fi

⇐⇒ q1−γ
ti (Xti) = τti

(
γ

nti/ti

)−fi

, (C.1)

where nt/t serves as an estimator of G(τt). This expression coincides with the expression

given in the main text.

The Expected Shortfall ES1−γ(Xt) is given by

ES1−γ(Xt) =
1

γ

∫ 1

1−γ

qst (Xt)ds

=
VaR1−γ(Xt | Ft−1, θ)

1− fi
, (C.2)

which is derived by moving constant terms in front of the integral and noting that

∫ 1

1−γ

(1− s)−fids = γ1−fi

1− fi

for fi < 1.
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For completeness, we note that in D’Innocenzo et al. (2024) the market risk measures are

given by

V aR1−γ(Xti) = q1−γ
ti (Xti) = τti +

δti
fi

[(
γ

nti/ti

)−fi

− 1

]
, (C.3)

ES1−γ(Xti) =
VaR1−γ(Xti | Ft−1, θ)

1− fi
+

δti − fiτti
1− fi

, (C.4)

for a tail-scale parameter δt. It is easily verified that these expressions collapse to (C.1) and

(C.2) if we set δti = fiτti in line with the limiting result of de Haan and Ferreira (2006).
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