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1 Introduction

We propose a novel observation-driven model that introduces time series dynamics into

the tail shape parameter of the Generalized Pareto Distribution (GPD). The GPD is of

considerable interest to financial economists, as it is the only non-degenerate density that

approximates the distribution of data exceedances beyond a given threshold; see, for example,

Davidson and Smith (1990), Embrechts, Klüppelberg, and Mikosch (1997), and McNeil, Frey,

and Embrechts (2010, Chapter 7). As a result, it plays a central role in the study of extremes,

comparable to the role the normal distribution plays in the study of observations with finite

variance. The proposed framework allows us to track the time variation in the tail index

of observations from a wide class of fat-tailed distributions; see Rocco (2014) for a recent

survey of extreme value theory (EVT) methods.

In our model, the tail shape dynamics are driven by the score of the predictive log-

likelihood. So-called Generalized Autoregressive Score (GAS) models were developed in

their full generality in Creal, Koopman, and Lucas (2013); see also Harvey (2013) for a

textbook treatment. In this setting, the time-varying parameter is perfectly predictable

one step ahead. This feature makes the new model observation-driven; see Cox (1981).

The likelihood is known in closed-form through a standard prediction error decomposition,

making parameter estimation straightforward via maximum likelihood procedures.

Extensive Monte Carlo experiments suggest that our score-driven model reliably captures

tail shape variation in a variety of simulation settings. In addition, the treatment of non-tail

observations is an important concern in the dynamic modeling of the tail shape parameter.

We therefore consider different approaches to the treatment of such observations in each

simulation: deletion, modeling as missing without information on the tail, and as a draw

from a mixture density with a point mass at zero. We find that the simple deletion of missing

values is appropriate if a complete time series of tail shape estimates is not required, and

tail fatness is sufficiently high. Modeling non-tail observations as missing works well if mean

reversion in the time-varying tail shape parameter is strong, regardless of the fatness in the

tail. Modeling the tail shape dynamics based on a mixture distribution performs well when
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mean reversion is less pronounced, and the tail is not as fat.

We apply our score-driven modeling framework to study sovereign bond yields at a high

frequency for five euro area countries: Greece, Ireland, Italy, Portugal, and Spain. We

demonstrate that two unconventional monetary policy measures involving asset purchases

adopted by the European Central Bank during the euro area sovereign debt crisis, specifically

its Securities Markets Programme (SMP) and the Outright Monetary Transactions (OMT)

program, helped lower the fatness of the right (bad) tail as well as the market risk associated

with holding certain sovereign bonds between 2010–2012. This is relevant since elevated tail

risks alone can force institutional investors and market makers to retreat from a given market,

particularly if value-at-risk constraints are binding; see, for example, Vayanos and Vila

(2009), and Adrian and Shin (2010). For anecdotal evidence that market makers withdrew

from trading Italian debt securities in 2011, see Pelizzon, Subrahmanyam, Tomio, and Uno

(2013).

For government bond purchases undertaken within the SMP, we disentangle announce-

ment effects from the impact owing to the implementation of announced purchases, and find

that announcement effects are more important. For example, we estimate that the announce-

ment of the SMP on 10 May 2010 reduced the 15-minute Expected Shortfall associated with

holding five-year government bonds by approximately -1.1 basis points (bps, Portugal), -1.5

bps (Spain), -2.2 bps (Italy), -3.5 bps (Ireland), and up to -5.4 bps (Greece). These reduc-

tions are economically meaningful given the prevailing market risks at that time, and the

fact that the impact of asset purchases as considered in this paper are in addition to the

effects on the conditional mean and variance of bond yields as documented in Ghysels, Idier,

Manganelli, and Vergote (2016), and Eser and Schwaab (2016). The immediate market risk

impact of the OMT announcement on 06 September 2012 ranges between approximately

zero (Italy) and -2 bps (Ireland), from lower levels of market risk at the time. As a result,

the announcement of unconventional monetary policies likely contributed towards restoring

depth and liquidity in impaired markets by allowing market makers to remain active during

turbulent times. By contrast, we find that the implementation of announced purchases did

not have an economically meaningful effect on tail risk in a setting where variation in the
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conditional variance is controlled for.

Based on our dynamic EVT framework, we also find that euro area government bonds

differed substantially in terms of tail shape and market risk during the euro area sovereign

debt crisis. Italian and Spanish bonds had the lowest (among the five SMP countries)

estimated 15-minute 99% Expected Shortfall, of up to approximately 50 bps. By contrast,

Greek bonds had a high estimated Expected Shortfall, of up to approximately 300 bps,

particularly in the months leading up to the credit event on 09 March 2012. These are

extreme levels of market risk. Interestingly, different market segments also experienced

peak market stress at different times. The highest tail risks are observed relatively late in

Spain and Italy, with pronounced peaks in 2011Q4. By contrast, elevated market stress

materialized already much earlier for Greek, Irish and Portuguese bonds, between 2010 –

2011. This is approximately in line with standard accounts of the debt crisis; see, for example,

Eser et al. (2012), and Cœuré (2013), according to which smaller countries in the periphery

of the euro area were affected first, and larger countries such as Italy and Spain were affected

later.

Several studies investigate the dynamic behavior of the tail index. Quintos, Fan, and

Phillips (2001) derive formal tests for time-variation in the tail index. A number of sub-

sequent studies apply these tests to financial time series data. For example, Werner and

Upper (2004) identify several breaks in the tail behavior of high-frequency German Bund

future returns. Similarly, Galbraith and Zernov (2004) demonstrate that certain regulatory

changes in U.S. equity markets altered the tail index dynamics of equities returns, while

Wagner (2005) argues that changes in government bond yields exhibit time-variation in the

tail shape for both the U.S. and the euro area. Another promising strand of the EVT lit-

erature exploits the high-dimensional panel structure of many datasets. For example, Kelly

(2014) develops a power law model for cross-sectional tail risk that takes a GARCH-type

autoregressive form. Building on this framework, Kelly and Jiang (2014) link the common

fluctuations in equity tail risk to other asset returns and macro-economic aggregates. Finally,

(dynamic) EVT has been applied in the study of systemic risk; see Hartmann, Straetmans,

and de Vries (2004, 2007), and Allen, Bali, and Tang (2012).
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The methodological part of this paper is closest to Massacci (2014). Massacci proposes

an observation-driven time series model for both the tail and scale parameters in the GPD

distribution of a univariate time series. Both parameters evolve in a bivariate system, and

are updated jointly based on the scaled score of the tail shape parameter. This approach

is an important addition to the dynamic EVT literature. However, it takes the view that

researchers are unwilling to work with pre-filtered data in practise. This is not always the

case; see McNeil and Frey (2000), Poon, Rockinger, and Tawn (2004), Brownlees and Engle

(2015), Lucas, Schwaab, and Zhang (2014, 2016), and others. If the data are de-volatized

based on an appropriate volatility model in a first step, the scale of the GPD becomes fixed

(at unity), leaving only one time-varying parameter to model. Our framework is different in

that our approach allows for more flexibility in the joint modeling of scale and the tail shape

parameter. In addition, we explore when the modeling of tail shape based on a mixture

distribution may not work as well as other approaches, and provide expressions for the score

and scaling function for these alternatives as well.

We proceed as follows. Section 2 introduces the statistical model. Section 3 provides

evidence from an extensive Monte Carlo study. Section 4 applies the model to euro area

sovereign bond yields. Section 5 concludes.

2 Statistical model

2.1 Time-varying tail risk

This section introduces time variation into the tail shape parameter ξt > 0 of the Generalized

Pareto Distribution (GPD). The probability density function (pdf) of a GPD distributed

random variable xt > 0 is given by

p(xt; δ, ξt) =
1

δ

(
1 + ξt

xt
δ

)− 1
ξt
−1

, (1)

where xt = yt − τ > 0 is the so-called peak-over-threshold (POT), or exceedance, of fat-

tailed data yt over a pre-determined threshold τ , δ > 0 is an additional scale (variance)
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parameter, and ξt > 0 is the tail shape parameter; see, for example, McNeil, Frey, and

Embrechts (2010).1 If yt − τ ≤ 0, we may consider xt as missing, or as a draw from a

mixture distribution, see Section 2.2 below. As a result, exceedances x = (x1, . . . , xT ) and

data y = (y1, . . . , yT ), t = 1, . . . , T , are univariate time series at the same frequency. The

cumulative distribution function (cdf) and the log-likelihood of xt is given by

P (xt; δ, ξt) = 1−
(
1 + ξt

xt
δ

)− 1
ξt , l(xt; δ, ξt) = − ln(δ)−

(
1 +

1

ξt

)
ln
(
1 + ξt

xt
δ

)
, (2)

respectively.

We assume that the pdf of yt, g(yt), is a fat-tailed distribution with time-varying tail

index αt > 0, such as, for example, a univariate Student’s t distribution with νt = αt = 1/ξt

degrees of freedom. In this case the cumulative distribution function G(yt) can be expressed

as G(yt) = G(τ)+(1−G(τ))P (xt) for sufficiently high values of τ . As a result, all interesting

tail behavior is captured by p(xt; δ, ξt).
2

Following Creal, Koopman, and Lucas (2013), and Harvey (2013), we endow ξt with

score-driven (GAS) dynamics using the derivative of the log conditional observation density

(1). We ensure positive values of ξt by specifying ξt = exp(ft). The transition dynamics for

ft are given by

ft+1 = ω +

p−1∑
i=0

aist−i +

q−1∑
j=0

bjft−j, (3)

st = St∇t, ∇t = ∂ ln p(xt|Ft−1; ft, ψ)/∂ft,

where ω = ω(ψ) is a fixed intercept, ai = ai(ψ) and bj = bj(ψ) are fixed scalar parameters

1Essentially all common continuous distributions of statistics and the actuarial sciences lie in a certain
Maximum Domain of Attraction (MDA); see McNeil et al. (2010, Chapter 7.1). When considering ξt > 0∀ t
we implicitly assume that a Fréchet limit (a power tail) applies. Examples of such distributions are Student’s
t, inverse gamma, loggamma, F, Fréchet, and Burr.

2The choice of threshold τ is subject to a well-known bias-efficiency tradeoff; see, for instance, McNeil and
Frey (2000). In theory, the limit distribution of exceedances holds exactly only as the threshold τ → +∞.
A higher threshold, however, also implies a smaller number of exceedances, and consequently an increased
sampling error in the estimation of the tail shape parameter. We address this issue by considering multiple
choices for τ in our empirical application. The 10% and 5% empirical quantile are common choices in the
literature; see Chavez-Demoulin, Embrechts, and Sardy (2014).
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that depend on the vector ψ containing all time invariant parameters in the model, and

Ft−1 = {x1, . . . , xt−1}.

For the remainder of the paper, we make three empirical choices. First, we select the

inverse conditional Fisher information of the observation density as our scaling function, St =

E[∇2
t |Ft−1; ft, ψ]

−1 = E[−∂∇t(xt|Ft−1; ft, ψ)/∂ft]
−1. Creal, Koopman, and Lucas (2013)

and Creal, Schwaab, Koopman, and Lucas (2014) demonstrate that this choice of scaling

function results in a stable model, and effectively yields a Gauss-Newton update of ft over

time. Second, we consider a fixed δ = 1 throughout the paper. This corresponds to the

common practise of using volatility-filtered data before considering tail risk dynamics. If

volatility clustering is not accounted for, movements in the tail may be confounded with

movements in the conditional variance; see, for example, McNeil and Frey (2000). Finally,

we assume p = q = 1 in (3), such that a = a0 and b = b0. Higher order terms are rarely

necessary in practise; see Creal et al. (2013). To ensure stationarity of the factor process we

require | b |< 1, and in addition restrict a > 0.

2.2 Treatment of non-tail observations

This section discusses three different approaches to the handling of non-tail observations

yt ≤ τ , and provides the resulting expressions for the conditional score ∇t and scaling

function St in (3). We consider the performance of these three approaches in our simulation

experiments in Section 3.

First, we simply decide to delete the missing entries in the univariate time series. This

yields a substantially shorter time series for x. In this case, closed-form expressions for the

score st and the scaling function St can be derived as

∇t =
1

ξt
ln
(
1 + ξt

xt
δ

)
− (ξt + 1)

xt
δ + ξtxt

, (4)

St =
(1 + 2ξt)(1 + ξt)

2ξ2t
, (5)

where, again, St = E[−∂∇t(xt|Ft−1; ft, ψ)/∂ft]
−1 is the inverse conditional Fisher informa-

tion quantity for xt. We refer to Appendix A1 for the derivation of (4) – (5). Deleting non-tail
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observations before applying (1) – (5) is straightforward, and in line with the spirit of EVT

in the absence of time variation in the tail index; see McNeil, Frey, and Embrechts (2010,

Chapter 7). One immediate downside of this approach, however, is that ξt is unavailable for

all yt ≤ τ .

Second, we calculate the scaled score (4) – (5) only if xt is observed, and assign a zero

value to the scaled score if xt is missing. This approach is adopted in Creal, Schwaab,

Koopman, and Lucas (2014). The updating equation becomes

ft+1 = ω + a · I(xt > 0)St∇t + b · ft. (6)

As a result, ft = ln(ξt) slowly reverts back to its unconditional mean ω/(1 − b) in the

absence of new information from the tail. The updating equation (6) takes into account that

ξt evolves as a continuous process which governs the tail behavior of each yt. An estimate

of ξt is now available at any time t.

Finally, we use a mixture distribution to model the exceedance and to derive the score;

see, for example, Davidson and Smith (1990), and Massacci (2014). In this case, observations

yt ≤ τ generate the POT values xt = 0. This approach allows us to incorporate information

in the tail as well as from the center of the distribution. We consider the mixture

ϕ(xt; δ, ξt) = I(xt > 0)

[
(1 + τ)

− 1
ξt
1

δ

(
1 + ξt

xt
δ

)− 1
ξt

−1
]
+ I(xt = 0)

(
1− (1 + τ)

− 1
ξt

)
, (7)

where the GPD pdf applies with tail probability Ḡ(τ) = (1 + τ)
− 1

ξt .3 The respective log-

likelihood is

ℓ(xt; δ, ξt) = I(xt > 0)

[
− 1

ξt
ln(1 + τ)− ln(δ)−

(
1 +

1

ξt

)
ln
(
1 + ξt

xt
δ

)]
+ I(xt = 0) ln(1− (1 + τ)

− 1
ξt ). (8)

3The tail probability is common across fat-tailed distributions g(yt). If G(yt) lies in the MDA of the
Fréchet limit (see footnote 1, and McNeil, Frey, and Embrechts (2010, p. 268)), the survival function of yt
can be written as Ḡ(yt) = y

−1/ξt
t · L(yt), where L(yt) is a slowly varying function. Adopting the choice

L(yt) = (yt/(1 + yt))
1/ξt yields the tail probability below (7).
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The score-driven update of ft = ln ξt becomes slightly more involved in this case. The score

and scaling function are now given by

∇t = I(xt > 0)

[
1

ξt
ln(1 + τ) +

1

ξt
ln
(
1 + ξt

xt
δ

)
− (ξt + 1)

xt
δ + ξtxt

]
− I(xt = 0)

[
(1 + τ)

− 1
ξt

1− (1 + τ)
− 1

ξt

1

ξt
ln(1 + τ)

]
, (9)

and

St =

[
2ξ2t (1 + τ)

− 1
ξt

(1 + 2ξt)(1 + ξt)
+

(1 + τ)
− 1

ξt

1− (1 + τ)
− 1

ξt

1

ξ2t
ln(1 + τ)2

]−1

, (10)

respectively. We refer to Appendix A2 for the derivation of (9)–(10). Since both expressions

are available in closed form, the transition equation for ft is straightforward.4 Modeling

the tail index as the inverse tail shape αt = 1/ξt in a score-driven way leads to equivalent

expressions for the score and the same scaling function.

2.3 Explanatory covariates

This section extends the score-driven mechanism for the time-varying tail shape to include

lagged values of economic variables as additional conditioning variables. For example, ECB

asset purchases may help explain the time variation in the right tail shape. As an extension,

we consider score-driven dynamics (9) – (10) with factor dynamics that include ECB asset

purchases,

ft+1 = ω + a · st + b · ft + c · SMPt + d · SMPt−1, (11)

where the additional right-hand side variables SMPt are daily purchase volumes in ebillion of

par value. Time differences in purchase volumes, or dummy variables indicating purchases,

are alternative conditioning variables. Intraday values are held constant at the daily levels.

We consider the extended specification (11) in Section 4.2.

4Computer code will be made available on http://www.gasmodel.com.
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3 Simulation study

This section presents our Monte Carlo simulation results. We are particularly interested in

two questions: whether our statistical framework reliably recovers time variation in the tail

shape, and which treatment of non-tail observations is appropriate.

We chose the Student’s t distribution yt ∼t(ν) as our fat tailed distribution g(yt), and

consider three values for the degrees of freedom parameter, ν = 3, 5, 7. The threshold τ is

the 90% percentile of the random sample generated from a t(3) and t(5) distribution, and

the 95% percentile when the sample is generated from the t(7) distribution (for which the

tail is less fat). The exceedance sample contains xt ∼ GPD(0, δ, ξt) if yt > τ , and zero

(missing) otherwise. The GPD distributed random variables are drawn as xt = δ
u
−ξt
t −1

ξt
,

where ut ∼ U[0, 1] is uniform.

Each simulation uses a different path for the tail shape parameter ξt = exp(ft). We con-

sider seven data generating processes (DGP). The first four processes are stylized dynamics in

the literature; see, for example, Lucas and Zhang (2016). The final three processes consider

random draws of ft subject to different parameters ψ.

(1) Constant: ξt = 0.9,

(2) Sine: ξt = 0.5 + 0.4 cos(2πt/200),

(3) Fast Sine: ξt = 0.5 + 0.4 cos(2πt/20),

(4) Step: ξt = 0.9− 0.5(t > 500),

(5) sGPDd : (delete missings) ft+1 = ω + aSt∇t + bft,

(6) sGPDz : (assign zero) ft+1 = ω + a · I(xt > 0)St∇t + bft,

(7) sGPDm : (mixture density): ft+1 = ω + aSt∇t + bft,

The parameters in simulation settings (5) – (7) are chosen in two different ways, as

ψ1 : ω = −0.025, a = 0.01, b = 0.97, δ = 1,

and ψ2 : ω = 0.01, a = 0.12, b = 0.85, δ = 1.

As a result, the tail risk dynamics under parameter vector ψ1 are more persistent than in the
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model with ψ2; note the higher value for b. In addition to exhibiting faster mean reversion,

the tails are also fatter under ψ2, as the unconditional mean of ft is higher.

We end up with 4+2×3 = 10 stochastic GPDs, in three environments (ν = 3, 5, 7). This

yields 30 data generating processes. For each DGP, we draw 100 simulation samples of y with

10, 000 observations each. As a result, approximately 1,000 (t(ν = 3, 5)) or 500 (t(ν = 7))

tail observations are used to construct POT values. Our main metric for evaluating model

performance is Mean Absolute Error, MAE = 1
ST

∑S
s=1

∑T
t=1 |ξ̂st − ξst|, where ξ̂st is the

estimated dynamic tail parameter in simulation s, ξst is the true tail shape, S is the number

of simulations, and T is the number of observations in each draw.

Table 1 presents the main MAE simulation outcomes. We focus on three main findings.

First, simply deleting missing values (our first approach) seems to be permissible as long as

the tail fatness is sufficiently high. When ν = 3, the respective factor estimates are close

to the underlying true processes in many cases. Even if the true tail dynamics come from

a mixture-likelihood model, the sGPDd and sGPDz approaches still deliver close estimates.

Modeling non-tail observations as missing, without information about the tail, works well if

mean reversion in the tail shape process is strong (ψ2), but not necessarily otherwise (ψ1).

As the degrees of freedom parameter increases and the sample size decreases (ν = 7), the

appropriateness of simply deleting missing values in x becomes less clear. In all DGPs under

ψ1, the mixture model sGPDm now outperforms the other approaches; see columns 6, 8,

and 10. This is not surprising. When the tail observations are less frequent and contain less

information about the (thinner) tail, then the mixture-density model benefits from being

able to take into account information from non-tail observations as well. If the tails are

fatter (ψ2), the first two approaches are again appropriate.

Second, the standard deviations about the MAE statistics are typically larger in the

first two rows than for the mixture-density approach. This difference in standard errors

points towards a loss of efficiency that occurs when we discard observations (as in the first

approach), or model them by a zero value for the score (the second approach). Again, the

mixture-density approach uses non-tail observations to at least some degree, implying less

variation across simulations for these estimates.
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Table 1: Simulation results: Mean Absolute Error

The table reports mean absolute error (MAE) statistics for 10 DGPs (columns) and three estimation
approaches (rows), in three environments (top, middle, and bottom panels). The hit variable I(yt > τ) is
simulated from a t(3), t(5), and t(7). We consider 100 simulations for each DGP, and a time series y of
10, 000 observations in each simulation. Different approaches to the treatment of non-tail observations are
indicated in the respective rows. sGPDd deletes missing vales, sGPDz assigns a zero value to the score at
missing values, and sGPDm uses a mixture density. Model performance is measured by the MAE from the
true ξt in each draw. The number in bold indicates minimum MAE among the four approaches considered.
For DGPs (5)–(8), two sets of parameters ψ1 and ψ2 apply.

Model (1) (2) (3) (4) (5)-ψ1 (5)-ψ2 (6)-ψ1 (6)-ψ2 (7)-ψ1 (7)-ψ2

t distributed, ν = 3

sGPDd 0.049 0.202 0.259 0.151 0.045 0.097 0.038 0.100 0.044 0.136
(0.037) (0.016) (0.006) (0.044) (0.022) (0.064) (0.021) (0.031) (0.018) (0.017)

sGPDz 0.046 0.293 0.260 0.274 0.054 0.534 0.040 0.123 0.043 0.136
(0.037) (0.042) (0.008) (0.040) (0.028) (0.139) (0.029) (0.052) (0.024) (0.020)

sGPDm 0.359 0.255 0.255 0.249 0.092 0.619 0.090 0.528 0.061 0.300
(0.008) (0.001) (0.001) (0.002) (0.013) (0.065) (0.008) (0.010) (0.006) (0.006)

t distributed, ν = 5

sGPDd 0.048 0.201 0.258 0.152 0.043 0.082 0.036 0.101 0.039 0.108
(0.034) (0.015) (0.006) (0.046) (0.022) (0.037) (0.021) (0.032) (0.019) (0.015)

sGPDz 0.045 0.297 0.259 0.280 0.057 0.566 0.036 0.117 0.036 0.106
(0.035) (0.040) (0.012) (0.046) (0.026) (0.154) (0.022) (0.047) (0.018) (0.016)

sGPDm 0.433 0.256 0.257 0.249 0.041 0.695 0.021 0.603 0.019 0.313
(0.007) (0.001) (0.001) (0.002) (0.005) (0.064) (0.005) (0.008) (0.003) (0.005)

t distributed, ν = 7

sGPDd 0.069 0.209 0.260 0.066 0.058 0.142 0.050 0.097 0.052 0.096
(0.046) (0.026) (0.009) (0.049) (0.031) (0.076) (0.034) (0.046) (0.032) (0.033)

sGPDz 0.062 0.314 0.259 0.059 0.060 0.504 0.043 0.088 0.045 0.090
(0.044) (0.113) (0.007) (0.046) (0.030) (0.221) (0.032) (0.047) (0.029) (0.029)

sGPDm 0.477 0.260 0.261 0.477 0.039 0.740 0.022 0.646 0.020 0.344
(0.006) (0.001) (0.001) (0.006) (0.010) (0.090) (0.005) (0.010) (0.002) (0.005)

Finally, the results are overall not too sensitive to which exact model is employed for

inference on ξt. For example, the mixture density approach is accurate even if the true

model is formulated differently. In other words, even (slightly) misspecified score-driven

models appear to work well. Blasques, Koopman, and Lucas (2015) prove that score-based

parameter updates always reduce the local Kullback-Leibler divergence between the true

conditional density and the (potentially misspecified) model-implied conditional density, and

are in this sense optimal from an information theoretic perspective. Table 1 suggests that

slightly misspecified models can still work well in practise.

Table 2 presents the mean squared error outcomes, MSE = 1
ST

∑S
s=1

∑T
t=1(ξ̂st − ξst)

2,

where S and T are as defined above. The MSE statistics correspond to a quadratic loss
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Table 2: Simulation results: Mean Squared Error

The table reports mean squared error (MSE) statistics for 10 DGPs (columns) and three estimation
approaches (rows), in three environments (top, middle, and bottom panels). The hit variable I(yt > τ) is
simulated from a t(3), t(5), and t(7). We consider 100 simulations for each DGP, and a time series y of
10, 000 observations in each simulation. Different approaches to the treatment of non-tail observations are
indicated in the respective rows. sGPDd deletes missing vales, sGPDz assigns a zero value to the score at
missing values, and sGPDm uses a mixture density. The number in bold indicates minimum MAE among
the four approaches considered. For DGPs (5)–(8), two sets of parameters ψ1 and ψ2 apply.

Model (1) (2) (3) (4) (5)-ψ1 (5)-ψ2 (6)-ψ1 (6)-ψ2 (7)-ψ1 (7)-ψ2

t distributed, ν = 3

sGPDd 0.004 0.057 0.086 0.034 0.004 0.052 0.003 0.039 0.004 0.033
(0.006) (0.010) (0.007) (0.015) (0.004) (0.085) (0.004) (0.027) (0.003) (0.008)

sGPDz 0.004 0.127 0.086 0.124 0.005 0.933 0.004 0.119 0.004 0.033
(0.005) (0.053) (0.009) (0.319) (0.007) (1.039) (0.010) (0.340) (0.007) (0.010)

sGPDm 0.129 0.081 0.081 0.076 0.010 0.882 0.008 0.315 0.004 0.117
(0.006) (0.001) (0.001) (0.002) (0.002) (0.613) (0.002) (0.027) (0.001) (0.006)

t distributed, ν = 5

sGPDd 0.004 0.058 0.085 0.040 0.003 0.030 0.002 0.044 0.003 0.019
(0.005) (0.011) (0.009) (0.052) (0.003) (0.035) (0.003) (0.058) (0.003) (0.005)

sGPDz 0.004 0.131 0.088 0.104 0.006 0.961 0.002 0.060 0.002 0.018
(0.005) (0.051) (0.040) (0.062) (0.006) (0.720) (0.003) (0.074) (0.002) (0.004)

sGPDm 0.187 0.082 0.082 0.099 0.003 0.960 0.001 0.408 0.001 0.113
(0.006) (0.001) (0.001) (0.003) (0.001) (0.399) (0.000) (0.061) (0.000) (0.004)

t distributed, ν = 7

sGPDd 0.012 0.062 0.088 0.008 0.009 0.111 0.004 0.033 0.005 0.017
(0.035) (0.016) (0.012) (0.010) (0.027) (0.179) (0.005) (0.056) (0.005) (0.010)

sGPDz 0.006 0.155 0.086 0.006 0.006 0.821 0.003 0.033 0.003 0.015
(0.008) (0.171) (0.008) (0.008) (0.009) (0.895) (0.004) (0.063) (0.004) (0.007)

sGPDm 0.228 0.087 0.087 0.228 0.003 1.059 0.001 0.443 0.001 0.128
(0.005) (0.001) (0.001) (0.005) (0.002) (0.571) (0.000) (0.070) (0.000) (0.004)

function, and punish large errors more heavily than MAE. The MSEs are qualitatively similar

to the MAE outcomes in terms of relative accuracy. Root MSEs are somewhat larger than

the respective MAEs, suggesting that estimation errors are mildly right skewed. Again,

the mixture density approach performs well, particularly when the tails are fat, but not

extremely fat. In all three cases, the estimated static parameters tend to be close to the true

parameters if the estimated model coincides with the DGP used for the simulation.
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4 Time-varying tail risk and unconventional policies

We apply our score-driven GPD model to study the impact of two key and, arguably, con-

troversial unconventional monetary policy measures adopted by the ECB during the euro

area sovereign debt crisis on the tail risk associated with holding certain sovereign bonds.

In practise, the risk of rapidly deteriorating government bond prices is not only borne by

investors, but also by the dealers who make these markets. If uncertainty and tail risks

become substantial, for example owing to debt sustainability or contagion concerns, then

tail risks alone can force institutional investors and market makers to retreat, particularly

if value-at-risk constraints are binding; see Vayanos and Vila (2009), and Adrian and Shin

(2010).

4.1 ECB unconventional monetary policies: SMP and OMT

The absence of “depth and liquidity” in a subset of sovereign bond markets severely hinders

a balanced, even transmission of a central bank’s monetary policy stance across different

countries in a monetary union. The SMP had the objective of helping to restore the monetary

policy transmission mechanism by addressing the malfunctioning of certain government bond

markets during the euro area sovereign debt crisis between 2010–2012; see, for instance,

González-Páramo (2011). Implicit in the concept of malfunctioning markets is the notion

that government bond yields can be unjustifiably high and volatile; see Eser et al. (2012)

and Eser and Schwaab (2016). Government bond purchases within the SMP were made

during a particularly severe sovereign debt crisis, when sovereign yields in several euro area

countries were at a high, on the rise, and volatile. During this phase, the targeted securities

met little private sector demand.

The introduction of the SMP was subject to significant controversy, both outside and

within the Eurosystem, i.e., the ECB and all National Central Banks (NCBs). The extent

of the controversy within the Eurosystem became evident with the resignation of the Bun-

desbank President in February 2011 and an ECB Executive Board member in September

13
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Figure 1: Weekly and total SMP purchase amounts.

The figure plots the book value of settled SMP purchases as of the end of a given week. We report weekly
purchases across countries (left panel) as well as the cumulative amounts (right panel). Maturing amounts
are excluded.

2011.5 The SMP was replaced by the Outright Monetary Transactions (OMTs) program on

6 September 2012. The OMT is a program under which the ECB bank conducts purchases

(“outright transactions”) in secondary, sovereign bond markets, under certain conditions, of

bonds issued by euro area member-states. The SMP and the OMTs are related but different

programs, see Cœuré (2013).6 No purchases have been made within the OMT program.

Instead, the mere announcement of that program was sufficient to calm financial markets

and contributed to ending the most acute phase of the sovereign debt crisis; see, for instance,

ECB (2013), and Lucas et al. (2014, 2016).

Figure 1 plots weekly total SMP purchases across countries as well as their accumulated

book value over time. Visibly, the weekly purchase data are unevenly spread over time. The

SMP was announced on 10 May 2010 and focused on Greek, Irish, and Portuguese debt

5A cursory look at bond yields and bond purchases within the SMP can, as some suggested at the time,
lead to the impression that the SMP was ineffective. In particular, yields were rising as purchases were taking
place. Both Ghysels et al. (2016) and Eser and Schwaab (2016) note that yield changes and SMP purchase
volumes at a daily frequency are positively correlated for most SMP countries. As a result, simple regression-
based techniques that relate yield changes to purchase amounts lead to insignificant or even positive impact
coefficient estimates. Among other significant concerns, being initially perceived as ineffective did not help
the popularity of the program.

6Both SMP and OMT were (are) controversial monetary policy measures. The decision of the European
Central Bank to enact OMT operations was not adopted unanimously. Critics pointed out that the program
might erode the willingness of certain euro area member-states to implement reforms. In the meantime,
the OMT has been challenged in the German Federal Constitutional Court, which in 2014 requested a
preliminary ruling from the European Court of Justice.
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securities. The program was extended to include Italian and Spanish bonds on 8 August

2011. Between 10 May 2010 and Spring 2012 there are long periods during which the SMP

was open but inactive. Approximately e214 billion (bn) of bonds were acquired within

the SMP between 2010 and early 2012. The SMP’s daily cross-country breakdown of the

purchase data is confidential at the time of writing. We use the confidential daily and

country-specific data for this study.

Our data on bond yields is from Thomson Reuters. We consider the midpoint between

continuous dealer quotes of ask and bid prices expressed in yields-to-maturity. Bond yields

are sampled at the 15 minute frequency between 8AM and 6PM; see Ghysels et al. (2016)

for a similar high-frequency approach. Figure 2 plots the yield-to-maturity of five-year

benchmark bonds for five euro area countries between 04 January 2010 and 31 December

2012, at the 15 minute frequency. During the debt crisis, some yields exhibited occasional

large and sudden moves, of up to 200 bps at a daily frequency, also leading to strong volatility

spikes. Pronounced announcement effects of the SMP are visible in the yield data. Five-year

yields dropped by -829 bps in Greece, -95 bps in Ireland, and -187 bps in Portugal on 10

May 2010; and by -90 bps in Spain and -62 bps in Italy on 8 August 2011, measured as

the difference in five-year benchmark bond yields between Monday 6pm and the respective

preceding Friday at 6pm. In addition, the credit event for Greek bonds on 09 March 2012

appears to have led to pronounced temporary spikes in yield levels and volatility in the other

four markets.

4.2 Volatility and tail shape estimates

This section presents our volatility and tail shape estimates, and discusses the parameter

estimates associated with the underlying models. We use a fairly straightforward t-GAS(1,1)

volatility model to pre-filter our data before EVT estimation. The univariate volatility model

is specified as

ỹt ∼ t(ỹt;σ
2
t , ν), ln(σt) = f v

t , (12)

f v
t+1 = ωv + av · sv,t + bv · f v

t ,
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Figure 2: Five-year benchmark bond yields and volatility

Five-year benchmark bond yields and volatility estimates σt for Spain (ES), Greece (GR), Ireland (IE),
Italy (IT), and Portugal (PT). Yields are in percentage points and are sampled at 15 minute intervals. The
volatility estimates are based on the robust volatility model (12); see Table 3 for the respective parameter
estimates. Volatilities are in percentage points, and re-scaled to match yields in terms of ranges to ensure
visibility. Greek bonds discontinued trading after 02 March 2012, and experienced a credit event on 09
March 2012.

where ỹt is the recursively demeaned (but not yet devolatized) change in the quoted yield

of a certain bond, ν is the degrees of freedom parameter, and sv,t is the scaled score from

a t-distribution; see Creal et al. (2013) and Lucas et al. (2014) for details. Extending the
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volatility factor specification with additional explanatory covariates along the lines of (11) is

possible, but not considered here for simplicity. The key feature of the Student’s t-GAS(1,1)

model, which differentiates it from a conditionally Gaussian (GARCH) model, is a weighting

term in its scaled score sv,t that lessens the impact of occasional extreme observations. Such

extreme observations commonly occur during a sovereign debt crisis, and particularly at a

high frequency. EVT estimation is based on POT observations xt = max(ỹt/σ̂t−τ, 0), where

σ̂t is the volatility estimate from (12).

Figure 2 plots our volatility estimates at the 15 minute frequency viz-a-viz the respective

bond yields. Volatility is high throughout 2010-2011 in Greece, Ireland, and Portugal, and

peaks somewhat later around 2011Q4 in Italy and Spain. Greek bond volatility is most

pronounced in the spring of 2012.

Figure 3 plots the filtered estimates of ξt. The tail shape is reported for different thresh-

olds τ at the 10%, 5%, and 2.5% empirical quantile of xt, respectively. We report estimates for

different values of τ from a robustness perspective, and suggest to focus on the 5% empirical

quantile (in red) as this value tends to do well in simulation settings; see Chavez-Demoulin

and Embrechts (2010). Grey shaded areas in 2010 and 2011 mark periods of focussed SMP

purchases in the respective markets, cf. Figure 1. The grey shaded area in 2012 marks the

time after the announcement of the technical details of the ECB’s OMT on 06 September

2012. The tail shape estimates suggest that periods of focussed asset purchases might be

associated with reductions in the fatness of the right tail (i.e., ξt decreases), at least in some

cases. The effects are the most visible for Greek bonds. These bonds exhibited the highest

yields and were subject to a particularly elevated level of stress between 2010–2012. Specifi-

cally, the second quarter of 2010 appears to be an exception to the otherwise upwards trend

in tail risk. Greek bonds ultimately experienced a credit event on 09 March 2012.

Table 3 (top panel) reports five sets of parameter estimates for the t-GAS volatility

model (12). The estimates indicate that high-frequency yield changes are fat tailed, in all

five markets. In all cases, the estimates of ν converge from above to 2.5, which we have

chosen as a lower bound for that parameter to prevent numerical instability that may occur
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Table 3: Parameter estimates

The top panel presents parameter estimates for five univariate t-GAS volatility models (12). Its final two
columns report the parameter-implied mode 15 minute and daily volatility as σ̄ = 100 × exp (ω/(1− bν))
and

√
40× σ̄, respectively, expressed in basis points. Rows labeled ES, GR, IE, IT, and PT refer to Spanish,

Greek, Irish, Italian, and Portuguese five-year bond yields. The estimation sample ranges from 04 January
2010 to 28 December 2012, except for Greece, for which the sample ends on 02 March 2012. Standard
errors are in round brackets and are constructed from the numerical second derivatives of the log-likelihood
function. The middle panel refers to the tail shape parameter model with parameter updates based on the
mixture density (7); see (9) – (10). The final column reports the parameter-implied mode tail shape as
ξ̄ = exp (ω/(1− b)). The bottom panel presents parameter estimates for the extended tail shape model (11)
which includes additional variables as explanatory covariates.

t-GAS volatility model

ωv av bv ν LogLik σ̄
√
40× σ̄

ES -0.2360 0.2180 0.9377 2.5000 84766.1 2.26 14.32
(0.0115) (0.0052) (0.0030) (0.0000)

GR -0.2565 0.3236 0.9207 2.5000 39844.0 3.94 24.90
(0.0113) (0.0065) (0.0034) (0.0000)

IE -0.2644 0.3047 0.9283 2.5000 73240.1 2.50 15.83
(0.0099) (0.0051) (0.0026) (0.0000)

IT -0.1667 0.1854 0.9558 2.5000 86264.8 2.30 14.56
(0.0094) (0.0051) (0.0024) (0.0000)

PT -0.3146 0.3700 0.9071 2.5000 63207.3 3.38 21.40
(0.0098) (0.0055) (0.0028) (0.0000)

Dynamic tail shape model (95%)
ω a b LogLik ξ̄ = exp ω

1−b

ES -0.0453 0.0013 0.9652 -7421.7 0.27
(0.0142) (0.0015) (0.0109)

GR 0.0000 0.0029 1.0000 -9686.9 0.49
(0.0001) (0.0005) (0.0001)

IE -0.0454 0.0000 0.9548 -10937.2 0.37
(0.0178) (0.0000) (0.0177)

IT -0.0008 0.0016 0.9994 -8055.8 0.26
(0.0005) (0.0004) (0.0004)

PT -0.0001 0.0017 0.9999 -11978.6 0.37
(0.0001) (0.0004) (0.0001)

Dynamic tail model (95%) with SMP volumes
ω a b SMPt SMPt−1 LogLik

ES 0.0000 0.0010 1.0000 0.0065 -0.0065 -7403.2
(0.0001) (0.0003) (0.0001) (0.0088) (0.0088)

GR 0.0000 0.0029 1.0000 0.0017 -0.0024 -9686.6
(0.0001) (0.0005) (0.0001) (0.0081) (0.0081)

IE 0.0000 0.0011 1.0000 -0.0331 0.0343 -10883.5
(0.0000) (0.0003) (0.0000) (0.0235) (0.0235)

IT 0.0000 0.0016 1.0000 0.0032 -0.0034 -8057.7
(0.0001) (0.0004) (0.0001) (0.0045) (0.0045)

PT 0.0000 0.0015 1.0000 0.0120 -0.0146 -11977.5
(0.0000) (0.0003) (0.0000) (0.0167) (0.0167)
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Figure 3: Tail risk dynamics in five euro area countries

Estimates of the time-varying tail shape parameter ξt at different levels of τ , corresponding to the 10%, 5%,
and 2.5% quantile, for Spain (ES), Greece (GR), Ireland (IE), Italy (IT), and Portugal (PT). Daily estimates
are obtained as the median value of the estimates at the 15 minute frequency. Shaded areas in 2010 and
2011 refer to frequent asset purchases within the SMP; see Figure 1. The shared area in late 2012 marks the
period after the announcement of the technical details of the ECB’s OMT program on 06 September 2012.
Greek bonds discontinued trading after 02 March 2012, and experienced a credit event on 09 March 2012.

in the estimation as ν ↓ 2.7 In addition, the volatility processes are fairly persistent, with

7EVT estimates are fairly robust to changes in the specification of the volatility model that is used to
pre-filter the data; see Rocco (2014). Requiring ν ≥ 2.5 leads to a relevant robustification of the volatility
filter; see Harvey (2013).
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bv > 0.9 in all cases.

The middle panel of Table 3 presents the parameter estimates for our baseline score-

driven tail shape model (3). We focus on the mixture approach (7) – (10), as this approach

performed well in our simulations as reported in Section 3, and allows us to obtain an

estimate of ξt at each point in time. The tail shape parameter estimates indicate fat tails,

with mode values ξ̄ = exp(ω/(1 − b)) reported in the last column of the bottom panel of

Table 3. Overall, tail fatness is in line with what is suggested by the t-GAS volatility models,

and suggests that t-distributions with ν ≈ 2 − 3 are appropriate for modeling changes in

euro area bond yields at 15-minute intervals between 2010–2012. The tail shape processes

are persistent, with typical values of b > 0.95.

Table 3 also presents the estimation results for the GAS-X specification (11) which allows

for additional explanatory covariates (bottom panel). We obtain mixed evidence regarding

the importance of SMP variables for explaining time variation in tail shape. On the one

hand, none of the coefficients for SMP variables are statistically significant according to

their t-values. In addition, three (of five) log-likelihoods are only marginally higher than for

specification (3). This outcome is robust to considering changes in purchases instead of levels,

and to replacing the purchase amounts with dummies indicating the presence of the ECB in

the respective markets. On the other hand, the additional SMP variables leads to significant

increases in log-likelihood in two cases (Spanish and Irish bonds). We conclude that the

direct inclusion of SMP variables does not significantly improve the fit of the dynamic tail

index model in all cases. This finding does not necessarily imply that purchases had no effect

on the tail shape. Instead, appropriate control covariates may be required (see footnote 5).

4.3 Impact on tail shape

We quantify the impact of SMP purchases on tail shape by estimating univariate time series

regressions at the country (bond) level,

ξ̂Dt = β0 + β1ξ̂
D
t−1 + β2D

10May
t + β3D

10May
t−1 + β4D

08Aug
t + β5D

08Aug
t−1

+ β6SMPt + β7SMPt−1 + β8SMPt−2 + β9D
OMT
t + β10D

OMT
t−1 + ϵt, (13)
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where ξ̂Dt = 1000 × (ξ̂Rt − ξ̂Lt ) is the scaled-up difference between the right (bad) tail shape

estimate ξ̂Rt and the tail shape estimate ξ̂Lt for the left (good) tail. The respective threshold

value τ is taken as the empirical 5% percentile, implying two positive POT values per day on

average. Regression (13) is specified at the daily frequency, where the regressand is sampled

at 6pm. D10May
t and D08Aug

t are dummy variables capturing SMP announcement effects on 10

May 2010 and 08 August 2011, respectively. We include lagged effects to allow for a delay in

measured impact. SMPt denotes the total amount spent on SMP asset purchases, in ebillion

of par value, in a certain bond market (all maturities) on intervention day t. Finally, the

dummy variable DOMT
t marks the ECB’s announcement of the technical details of its OMT

program on 06 September 2012.

Considering the difference ξ̂Rt − ξ̂Lt treats ξ̂Lt as a control (benchmark) variable. The left

tail shape explains some of the time variation in the right tail shape, for example owing to

shared exposure to common uncertainty about debt sustainability and political outcomes.

Simultaneously, the left tail shape is unlikely to be impacted by SMP asset purchases. The

ECB’s first SMP-related press release on 10 May 2010 clarified that purchased bonds would

be retired on the ECB balance sheet until the bonds mature. The ECB never sold (nor

lent out) any government bonds purchased within the SMP. As a result, the SMP was a

‘one-sided’ program, and its purchases during the debt crisis are best pictured as ‘leaning

against’ the potential of sharply rising yields during the sovereign debt crisis.8 If the left tail

shape were to decline following an SMP intervention, in line with a reduction in uncertainty,

then the impact estimates based on (13) constitute a conservative lower bound.

Regression (13) uses a generated regressand; see, for example, Pagan (1984) for a dis-

cussion. This means that t-statistics based on OLS standard errors may be inflated by an

unknown amount. In addition, differences in sampling error in the first step may lead to

heteroscedastic error terms in the second step; see Lewis and Linzer (2005). The second

issue is unlikely to be a problem in our setting, as our EVT-based inference is performed

on devolatized data xt. Robust standard errors may mitigate the bias in standard errors

8We experimented with including SMP variables into the specification of the left tail shape via (11).
The respective SMP coefficient estimates, as well as increments in log-likelihood, are insignificant, with the
exception of lagged purchases for the Irish five-year bond.
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to some extent; see again Lewis and Linzer (2005). We nevertheless suggest to interpret

the parameter standard errors associated with regression (13) with caution, and to apply

a higher-than-usual thresholds to the reported Heteroskedastic and Autocorrelation Consis-

tent (HAC) t-statistics. Parameter estimates in regression (13) are consistent under fairly

weak assumptions.

The top panel in Table 4 reports the parameter estimates for (13) obtained by least

squares regression. The estimates suggest that the announcement of ECB asset purchases

on 10 May 2010 and 08 August 2011 lowered the tail risk of holding sovereign bonds in all

countries (except possibly Italy). The initial announcement on 10 May appears to have had

a relatively stronger effect than the re-announcement and extension on 08 August 2011. The

impact coefficients for actual purchases may be statistically significant in some cases; the

economic magnitude of these impacts, however, is small and arguably negligible. (Recall that

tail shape differences are scaled up by a factor of 1000, and purchases are scaled in ebn.)

Changes in tail risk tend to be associated with lagged, not contemporaneous, purchases. This

may reflect the fact that ξ̂Rt is filtered from sparse data. Future (smaller) exceedances are

required to lower the dynamic tail shape parameter. The tail shape differences are persistent

even at the daily frequency, with autoregressive coefficients close to one. This pronounced

persistence suggests to also consider time differences; see specification (14) below. The

OMT program is associated with falling tail risk, particularly for Spanish and Irish bonds.

No estimate for OMT impact is available for Greek benchmark bonds, as these discontinued

trading in March 2012.

To give the filtered tail shape parameter more time to adjust to contemporaneous ECB

actions, and to accommodate the autocorrelation in the tail shape estimates, we also consider

two-day (34 hour) tail differences as the dependent variable. This means we compare the

tail shape estimates at the end of day t at 6pm with the estimate at the start of day t− 1 at

8am. We benchmark the time difference by the corresponding difference for the left-hand tail,

again assuming that asset purchases affect only the right-hand tail. Specifically, we construct

scaled up differences-in-differences ξ̂DiD
t = 1000 ×

(
(ξ̂Rt,6pm − ξ̂Rt−1,8am)− (ξ̂Lt,6pm − ξ̂Lt−1,8am)

)
,
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Table 4: Regression estimates for tail risk differences

The top, middle, and bottom panel report least squares parameter estimates for univariate time series
regressions (13), (14), and (17), respectively. Rows ES, GR, IE, IT, and PT refer to parameter estimates
for Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bonds. Parameter t-values are in
square brackets and are based on Newey-West HAC standard errors.

const. ξ̂Dt−1 D10May
t D10May

t−1 D08Aug
t D08Aug

t−1 SMPt SMPt−1 SMPt−2 DOMT
t DOMT

t−1 R2

ES 0.34 0.97 -4.67 -0.52 -10.68 -16.22 0.00 0.00 -0.00 -12.46 -4.59 0.94
[1.8] [98.4] [-33.6] [-3.5] [-2.2] [-4.5] [1.9] [0.4] [-4.5] [-48.0] [-12.6]

GR -0.03 0.99 -0.25 -0.25 0.17 0.05 0.00 -0.00 0.00 - - 0.99
[-2.3] [90.1] [-2.8] [-3.0] [13.8] [3.9] [1.4] [-3.0] [1.1] - -

IE 0.32 0.98 -20.48 -19.49 -8.85 -1.06 0.01 0.00 -0.00 -6.64 -8.54 0.97
[1.20] [125.] [-4.9] [-3.6] [-17.4] [-2.3] [3.1] [0.5] [-3.0] [-24.0] [-34.6]

IT -0.00 0.98 0.18 0.13 0.14 -0.04 -0.00 0.00 0.00 0.00 0.04 0.97
[-0.5] [122.] [39.2] [37.6] [2.8] [-0.8] [-1.3] [1.4] [1.2] [1.4] [12.7]

PT 0.49 0.98 -9.58 -3.16 -7.35 -10.40 0.00 -0.00 0.00 4.94 -2.26 0.97
[1.2] [137.] [-3.1] [-0.5] [-12.8] [-18.6] [2.8] [-1.0] [1.2] [19.2] [-9.1]

const. D10May
t D10May

t−1 D08Aug
t D08Aug

t−1 SMPt SMPt−1 SMPt−2 DOMT
t DOMT

t−1 R2

ES -0.15 -3.46 -3.73 -22.78 -21.90 2.35 0.73 -2.44 -16.43 -13.33 0.04
[-0.6] [-13.0] [-14.1] [-3.6] [-4.7] [2.2] [0.8] [-5.1] [-62.0] [-50.3]

GR -0.03 -0.33 -0.55 0.29 0.02 0.01 -0.02 -0.02 0.01
[-1.1] [-2.4] [-3.3] [11.4] [0.6] [0.3] [-0.7] [-0.9]

IE -0.08 -15.43 -30.30 -9.72 -10.80 7.78 4.67 -6.54 -12.13 -20.26 0.02
[-0.2] [-1.8] [-2.8] [-8.7] [-15.5] [1.5] [1.6] [-3.5] [-29.3] [-48.9]

IT 0.00 0.24 0.23 0.16 0.05 -0.01 0.01 0.00 0.02 0.00 0.02
[-0.5] [53.6] [50.0] [1.6] [0.7] [-0.8] [1.1] [0.6] [3.9] [-0.6]

PT -0.12 -6.84 -13.98 -17.29 -19.07 4.55 -0.70 -0.92 9.34 -12.08 0.02
[-0.3] [-1.0] [-2.0] [-15.0] [-25.3] [1.5] [-0.4] [-0.5] [19.5] [-25.2]

const. D10May
t D10May

t−1 D08Aug
t D08Aug

t−1 SMPt SMPt−1 DOMT
t DOMT

t−1 R2

ES 0.00 -1.26 -0.28 0.25 -1.23 -0.00 0.00 -0.66 0.01 0.03
[0.1] [-163.] [-36.3] [0.2] [-1.3] [-0.2] [0.4] [-85.7] [0.9]

GR 0.14 -9.92 4.56 -1.1 -0.82 -0.00 0.00 - - 0.01
[0.8] [-1.5] [1.4] [-5.9] [-4.6] [-1.1] [0.4] - -

IE -0.02 -1.65 -1.80 -2.21 8.41 0.00 -0.00 -1.55 -0.15 0.01
[-0.2] [-0.4] [-0.4] [-6.4] [43.1] [0.5] [-0.5] [-21.4] [-2.0]

IT 0.01 -2.00 -0.19 1.09 -1.63 -0.00 0.00 0.69 -0.47 0.03
[0.6] [232.] [-22.3] [1.3] [-2.8] [-0.9] [0.9] [80.0] [-54.2]

PT -0.00 2.41 -3.47 -6.74 3.10 -0.00 0.00 7.10 -7.88 0.01
[-0.0] [0.4] [-1.9] [-20.2] [8.2] [-0.2] [0.4] [42.3] [-46.9]

and relate these to unconventional monetary policies as

ξ̂DiD
t = β0 + β1D

10May
t + β2D

10May
t−1 + β3D

08Aug
t + β4D

08Aug
t−1

+ β5SMPt + β6SMPt−1 + β7SMPt−2 + β8D
OMT
t + β9D

OMT
t−1 + ϵt, (14)
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where right-hand side variables are defined as in (13).

The middle panel of Table 4 presents the respective least squares parameter estimates.

The main results are similar to the outcome reported in the top panel. We again document

clear announcement effects regarding SMP asset purchases for both the 10 May 2010 and 08

August 2011 statement (columns 3–4, and 5–6, respectively). Similarly, the OMT dummy

variable is negatively related to time-variation in the tail shape parameter (except Italy;

columns 10–11). Conversely, the implementation of the purchases on a day-to-day basis does

not appear to have had an economically meaningful additional impact on tail shape (columns

7–9), as the row sums of the respective coefficient estimates are close to zero. For Italy, no

entry is both negative and statistically significant. This negative finding is approximately in

line with the empirical results in Ghysels et al. (2016) and Eser and Schwaab (2016), where

the smallest impact estimate (per e1 bn) on the conditional mean is also obtained for Italian

bonds. We conclude that the announcement of ECB unconventional policy measures, such

as the SMP and OMT, helped lower the tail shape associated with holding certain sovereign

bonds between 2010–2012. By contrast, the implementation of announced purchases within

the SMP does not appear to have had a strong effect on tail shape.

4.4 Impact on market risk

This section quantifies the impact of SMP purchases on the market risk associated with

holding certain SMP government bonds between 2010–2013. The focus on market risk also

allows us to revisit the economic significance of unconventional monetary policies such as

the ECB’s SMP and OMT. Specifically, we consider the Value-at-Risk (VaR) and Expected

Shortfall (ExS) 15 minutes ahead and at a 99% confidence level. The measurement of market

risk is a major application of EVT methods in practise; see McNeil et al. (2010).

A useful relationship between the GPD and excess loss measures is presented in McNeil

and Frey (2000); see also Rocco (2014). In our setting, an EVT-based estimate of the VaR
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of yt at quantile γ can be obtained as

VaRγ
t (Y ) = σ̂tτ +

σ̂t

ξ̂t

[(
N

Nτ

(1− γ)−ξ̂t

)
− 1

]
, (15)

where σ̂t is obtained from (12), ξt is as above, and τ is fixed for a given data sample of

size N = t at time t. As the sample size increases, time variation in τ is present but also

negligible, as it refers to devolatized data xt from a growing sample at a high frequency. For

any sample of size N = t, we observe Nτ non-zero observation for xt. The corresponding

Expected Shortfall is the average VaR in the tail, see McNeil, Frey, and Embrechts (2010,

Chapter 2). Assuming that ξt < 1, an closed-form expression is available as

ExSγ
t (Y ) =

1

1− γ

∫ 1

γ

VaRτ
t (Y )dτ =

VaRγ
t (Y )

1− ξ̂t
+
σ̂t(1− ξ̂tτ)

1− ξ̂t
. (16)

The ExSγ
t (Y ) (16) is strictly higher than the VaRγ

t (Y ) (15) at the same confidence level, as

it “looks further into the tail” of suddenly rising yields. In addition, it can be shown that

the ratio ExSγ
t (Y )/VaRγ

t (Y ) is monotonously increasing in ξt for γ → 1.

Figure 4 plots our time series estimates of VaR and Expected Shortfall at a 99% confidence

level for five SMP benchmark bonds. We focus on three findings. First, government bonds

differed substantially in terms of their tail risk at any time during the euro area sovereign

debt crisis. Italian and Spanish bonds had the lowest estimated Expected Shortfall, with

a risk of an increase of up to approximately 50 bps on average within 15 minutes at the

99% confidence level. Irish and Portuguese bonds were intermediate cases, with a 15-minute

99% Expected Shortfall of up to 150 bps. Finally, Greek bonds had the highest estimated

15-minute Expected Shortfall of up to 300 bps, particularly in the period leading up to the

eventual credit event in March 2012.

Second, Figure 4 also reveals a different timing of the maximum amount of market risk

in each market segment. The highest tail risks are observed relatively late in Spain and

Italy, with pronounced peaks in 2011Q4. By contrast, elevated market stress is visible for

Greek, Irish and Portuguese bonds already much earlier, between 2010 – 2011. This is
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Figure 4: VaR and ExS estimates for five SMP bonds

Value-at-Risk (VaR) and Expected Shortfall (ExS) estimates for five-year benchmark government bonds
for Spain (ES), Greece (GR), Ireland (IE), Italy (IT), and Portugal (PT). The VaR and ES are at a 99%
confidence level. Shaded areas correspond to policy interventions; cf. Figure 3. Data between 01 January
and 30 March 2010 are used to initiate the threshold τ , and are therefore not reported. The panels plot the
daily median of the 15 minute estimates.
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approximately in line with standard accounts of the debt crisis; see, for example, Cœuré

(2013), according to which smaller countries in the periphery of the euro area were affected

first, and larger countries such as Italy and Spain were affected later. Interestingly, outright

purchases within the SMP appear to have reduced the VaR and Expected Shortfall of SMP

bonds; particularly for Greek, Irish, and Portuguese bonds during 2010 and 2011.

To quantify the impact of ECB asset purchases on market risk we follow the same empir-

ical strategy as in Section 4.3. We again benchmark the right (bad) tail value to its left-tail

value, and consider daily differences, as ExSDiD
t = (ExSR

t − ExSR
t−1) − (ExSL

t − ExSL
t−1).

ExSDiD
t is measured in basis points, and sampled at 6pm. We relate these differences in

market risk to ECB unconventional policies,

ExSDiD
t = β0 + β1D

10May
t + β2D

10May
t−1 + β3D

08Aug
t + β4D

08Aug
t−1

+ β5SMPt + β6SMPt−1 + β7D
OMT
t + β8D

OMT
t−1 + ϵt, (17)

where again right-hand side variables are defined below (13). Impact estimates from specifi-

cation (17) are conservative if unconventional policies move the left-hand Expected Shortfall

as well. This is the case, by construction, if unconventional policies had an impact on the

conditional second moment. This is likely the case. For example, Ghysels et al. (2016) find

that SMP purchases had a negative impact on the conditional variances at a high frequency.

The bottom panel of Table 4 reports the regression outcomes. The announcement of

the SMP on 10 May 2010 reduced the 15-minute Expected Shortfall from holding five-year

government benchmark bonds by approximately -1.1 (PT), -3.5 (IE), and up to -5.4 bps (GR).

Reductions in Expected Shortfall can also be observed for Spain and Italy at this time, with

impacts of approximately -1.5 and -2.2 bps, respectively. These are economically meaningful

reductions given the magnitudes of market risk at these times; see Figure 4. The respective

15-minute Expected Shortfalls range from approximately 20 to 40 bps (Ireland, Italy, and

Spain), and up to 150 bps (Greece), on average on the ten days preceding the 10 May

2010 announcement. The re-announcement and extension of the SMP on 08 August 2011

reduced the 15-minute Expected Shortfall of Spanish and Italian bonds by approximately -1
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bps. As a result, the re-announcement effects are generally smaller than those for the initial

announcement on 10 May 2010. This finding could be due to a combination of two effects.

First, purchases following the 8 August 2011 mainly focused on the Italian and Spanish debt

markets, which were relatively less stressed, as well as larger and deeper. Second, based

on the fact that the SMP interventions that began in May 2010 were toned down after a

while, it is possible that some market participants expected a similar development after the

reactivation of the SMP.

The bottom panel of Table 4 provides no evidence that the implementation of announced

SMP purchases reduced market risk (columns 7–8). The respective impact estimates are

statistically and economically insignificant. As a caveat, market risk may still decline though

a reduction in the conditional variance of bond yields; see Ghysels et al. (2016). Finally,

the risk impact of the OMT announcement on 06 September 2012 ranges between zero

(Italy) and approximately -2 bps (Ireland). This event study-type impact is significant, but

likely understates the cumulative effect of OMT on sovereign tail risks; see Figure 4 and

Lucas et al. (2014). The regression estimates for VaR differences are qualitatively similar

and therefore omitted. We conclude that ECB unconventional policies likely contributed

towards mitigating high tail risk in government bond markets during the sovereign debt

crisis between 2010-2012. While there is little evidence that the implementation of SMP

purchases affected measured market risks, the announcements of both SMP and OMT led

to meaningful reductions. By extension, these programs contributed to restoring the “depth

and liquidity” of certain bond markets that were the most affected by the crisis, by helping

market makers to remain active during turbulent times.

5 Conclusion

This paper introduced time variation into the tail shape parameter of the Generalized Pareto

Distribution, yielding a novel observation-driven model. Specifically, our modeling frame-

work allows us to track the time variation in the tail index of time series observations from

a wide class of fat-tailed distributions. In the empirical application, we demonstrated that
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two controversial unconventional monetary policies adopted by the ECB during the euro

area sovereign debt crisis lowered the tail shape and mitigated the extreme market risks

associated with holding certain sovereign bonds between 2010–2012.

Appendix A1: Score and scaling function for a GPD

random variable

This section derives (4) – (5). Recall the GPD pdf

p(xt; δ, ξt) =
1

δ

(
1 + ξt

xt
δ

)− 1
ξt

−1
,

and that the respective log-likelihood is given by (2) as l(xt; δ, ξt) = − ln(δ)−
(
1 + 1

ξt

)
ln

(
1 + ξt

xt
δ

)
,

where δ > 0, ξt > 0, xt > 0, and ξt = exp (ft). The score function (4) is straightforward, and is

obtained as

∇t =
∂l(xt; δ, ξt)

∂ft
=
∂l(xt; δ, ξt)

∂ξt
· dξt
dft

,

∂l(xt; δ, ξt)

∂ξt
=

1

ξ2t
ln

(
1 + ξt

xt
δ

)
−

(
1 +

1

ξt

)
xt

δ + ξtxt
,

dξt
dft

= exp (ft).

The score is zero in expectation if the model is well-specified; see Creal et al. (2013), implying

∫ ∞

0

1

ξ2t
ln

(
1 + ξt

xt
δ

)
p(xt; δ, ξt)dxt =

∫ ∞

0

(
1 +

1

ξt

)
xt

δ + ξtxt
p(xt; δ, ξt)dxt. (A1)

The scaling function is chosen as the inverse conditional Fisher information of the GPD,

St = E[∇2
t |Ft−1; ft, ψ]

−1 = E

[(
∂l(xt; δ, ξt)

∂ξt

)2(dξt
dft

)2
]−1

= E

[
−∂

2l(xt; δ, ξt)

∂ξ2t

]−1

exp (−2ft),
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where the last equality sign uses a standard result. The expected negative second derivative is

E

[
−∂

2l(xt; δ, ξt)

∂ξ2t

]
= −

∫ ∞

0

[(
1 +

1

ξt

)
x2t

(δ + ξtxt)2
+

2

ξ2t

xt
δ + ξtxt

− 2

ξ3t
ln

(
1 + ξt

xt
δ

)]
p(xt; δ, ξt)dxt

= −
∫ ∞

0

[(
1 +

1

ξt

)
x2t

(δ + ξtxt)2
+

2

ξ2t

xt
δ + ξtxt

− 2

ξt

(
1 +

1

ξt

)
xt

δ + ξtxt

]
p(xt; δ, ξt)dxt

= −
∫ ∞

0

[(
1 +

1

ξt

)
x2t /δ

2

(1 + ξtxt/δ)2
− 2

ξt

xt/δ

1 + ξtxt/δ

]
1

δ

(
1 + ξt

xt
δ

)− 1
ξt
−1

dxt

= −
∫ ∞

0

[(
1 + ξt
ξ3t

)
ξ2t x

2
t /δ

2

(1 + ξtxt/δ)2
− 2

ξ2t

ξtxt/δ

1 + ξtxt/δ

]
1

δ

(
1 + ξt

xt
δ

)− 1
ξt
−1

dxt

= −1 + ξt
ξ4t

∫ ∞

1
(ut − 1)2u

−1/ξt−3
t dut +

2

ξ3t

∫ ∞

1
(ut − 1)u

−1/ξt−2
t dut, (A2)

where we used (A1) in the second line, and where the last equality comes from a change of variable

substituting ut = 1 + ξtxt/δ.

The two integrals in (A2) can be treated as scaled up first moments E(ut). To see this, note

that the new random variable ut is Pareto (Type 1) distributed, with pdf

p̃(ut; at, b) =
atb

at

utat+1
, ut > 1, (A3)

with nth un-centered moment available as

E(unt ) =
atb

n

at − n
. (A4)

The first integral in (A2) corresponds to p̃(ut; 1/ξt +2, 1), while the second integral corresponds to

p̃(ut; 1/ξt + 1, 1). This implies that

−1 + ξt
ξ4t

∫ ∞

1
(ut − 1)2u

−1/ξt−3
t dut =

−2

ξt(1 + 2ξt)

2

ξ3t

∫ ∞

1
(ut − 1)u

−1/ξt−2
t dut =

2

ξt(1 + ξt)
.

Adding terms and inverting, we obtain the scaling function (5) in closed form as

St =
(1 + 2ξt)(1 + ξt)

2
exp (−2ft) =

(1 + 2ξt)(1 + ξt)

2ξ2t
.
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Appendix A2: Score and scaling function for a mixture

of a GPD with a point mass at zero

This section derives (9) – (10). Recall that the mixture GPD density (7) has a point mass at zero

and is given by

ϕ(xt; δ, ξt) = I(xt > 0)

[
(1 + τ)

− 1
ξt
1

δ

(
1 + ξt

xt
δ

)− 1
ξt

−1
]
+ I(xt = 0)

(
1− (1 + τ)

− 1
ξt

)
.

The respective log-likelihood (8) is given by

ℓ(xt; δ, ξt) = I(xt > 0)

[
− 1

ξt
ln(1 + τ)− ln(δ)−

(
1 +

1

ξt

)
ln

(
1 + ξt

xt
δ

)]
+ I(xt = 0) ln(1− (1 + τ)

− 1
ξt ).

The derivation of the score follows Appendix A1, with some adjustments. In particular,

∇t =
∂ℓ(xt; δ, ξt)

∂ft
=
∂ℓ(xt; δ, ξt)

∂ξt
· dξt
dft

,

∂ℓ(xt; δ, ξt)

∂ξt
= I(xt > 0)

[
1

ξ2t
ln
(
1 + ξt

xt
δ

)
− ξt + 1

ξt

xt
δ + ξtxt

]
(A5)

+ I(xt > 0)

[
1

ξ2t
ln(1 + τ)

]
+ I(xt = 0)

[
1

ξ2t
ln(1 + τ)

]
(A6)

− I(xt = 0)

[
1

1− (1 + τ)
− 1

ξt

1

ξ2t
ln(1 + τ)

]
(A7)

dξt
dft

= exp (ft).

The first part of the score (A5) is the same as in Appendix A1. (A5) is adjusted by (A6)–(A7) to

take account of the point mass at zero. Combining (A5)–(A7) yields (9).

As before, the scaling function is the inverse conditional Fisher information of the mixture

density,

St = E[∇2
t |Ft−1; ft, ψ]

−1 = E

[
−∂

2ℓ(xt; δ, ξt)

∂ξ2t

]−1

exp (−2ft).

The expectation of the negative second derivative is given by the sum of three expected negative
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partial derivatives of (A5)–(A7). Specifically,

E

[
−∂

2ℓ(xt; δ, ξt)

∂ξ2t

]
= E

[
−∂ (A5)

∂ξt

]
+ E

[
−∂ (A6)

∂ξt

]
+ E

[
−∂ (A7)

∂ξt

]
,

where E

[
−∂ (A5)

∂ξt

]
=

2(1 + τ)
− 1

ξt

(1 + 2ξt)(1 + ξt)
, (A8)

E

[
−∂ (A6)

∂ξt

]
=

2

ξ3t
ln(1 + τ), (A9)

E

[
−∂ (A7)

∂ξt

]
=

(1 + τ)
− 1

ξt

1− (1 + τ)
− 1

ξt

1

ξ4t
ln(1 + τ)2 − 2

ξ3t
ln(1 + τ), (A10)

and where (A8) follows from the result in Appendix A1. The indicator functions in (A5)–(A7)

disappear as they determine the domain of integration when taking expectations. Note that (A10)

does not require integration, but evaluation at a point mass. Combining terms, we obtain (10) in

closed form as

St =

[
2ξ2t (1 + τ)

− 1
ξt

(1 + 2ξt)(1 + ξt)
+

(1 + τ)
− 1

ξt

1− (1 + τ)
− 1

ξt

1

ξ2t
ln(1 + τ)2

]−1

.
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